VAE与GAN的关系(2)

本文探讨了VAE和GAN两种生成模型的损失函数推导,指出两者可在KL散度统一框架下讨论,并有相似出发点,但因隐变量设计不同导致训练和效果区别。GAN衡量样本与真实数据的分布差异,而VAE关注Auto-Encoder的重构误差。文章提出结合两者的可能性。
摘要由CSDN通过智能技术生成

上文从 KL(q(x,y)p(x,y)) K L ( q ( x , y ) ‖ p ( x , y ) ) 推导出GAN的两个Loss,并给出生成器Loss的正则项设计思路,接下来我们仍从引入隐变量构成联合概率分布角度,推导VAE的Loss。
首先,我们观察 KL(p(x,z)q(x,z)) K L ( p ( x , z ) ‖ q ( x , z ) ) 有:

KL(p(x,z)q(x,z))=KL(p(x)q(x))+p(x)KL(p(z|x)q(z|x))dxKL(p(x)q(x))(1) K L ( p ( x , z ) ‖ q ( x , z ) ) = K L ( p ( x ) ‖ q ( x ) ) + ∫ p ( x ) K L ( p ( z | x ) ‖ q ( z | x ) ) d x ≥ K L ( p ( x ) ‖ q ( x ) ) ( 1 )

KL(p(x,z)q(x,z)) K L ( p ( x , z ) ‖ q ( x , z ) ) KL(p(x)q(x)) K L ( p ( x ) ‖ q ( x ) ) 的上界,优化此上界就达到了优化 KL(p(x)q(x)) K L ( p ( x ) ‖ q ( x ) ) 本身。
对于VAE而言, x x 表示数据样本空间的一个数据点,e.g:MNIST的图片空间是784(28*28)维度空间; z z 表示编码器生成的编码(Code),它是一个多维随机变量,一般为100维,于是有:
1、真实分布: p(x,z)=p(z|x)
时间序列异常检测是指通过分析时间序列数据的统计特征,来检测其中的异常数据点。传统的方法主要是基于统计学原理,如均值、标准差等指标来进行异常检测。然而,这些方法无法捕捉到时间序列中的复杂关系和非线性特征,因此在实际应用中往往存在误判或漏判的情况。 近年来,深度学习技术在时间序列异常检测领域得到了广泛应用。其中,VAEGAN是两种典型的深度学习模型,它们可以用于时间序列异常检测,并且有一定的创新性。 VAE是一种生成模型,它可以通过学习输入数据的概率分布,生成与输入数据相似的新数据。在时间序列异常检测中,VAE可以学习时间序列数据的潜在表示,并通过比较输入数据和生成数据的重构误差来判断输入数据是否异常。VAE的创新之处在于,它可以在保持数据原始特征的同时,对数据进行降维和压缩,从而提高了模型的复杂度和灵活性。 GAN是一种对抗生成模型,它可以通过训练一个生成器和一个判别器来生成与输入数据相似的新数据。在时间序列异常检测中,GAN可以通过生成器生成与输入数据相似的新数据,判别器则判断输入数据和生成数据的相似度,从而判断输入数据是否异常。GAN的创新之处在于,它可以通过对抗学习的方式,不断提高生成器的生成能力和判别器的判别能力,从而提高检测精度。 总之,VAEGAN作为深度学习模型在时间序列异常检测中有着广泛的应用,并且具有一定的创新性,可以通过学习数据的潜在表示、生成新数据等方式,提高模型的灵活性和检测精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值