大模型 lora 训练后的权重合并

本文将介绍如下内容:

  • 一、Lora 合并的环境依赖
  • 二、Lora 合并代码实现

一、Lora 合并的环境依赖

autoawq                           0.2.5
peft                              0.14.0
transformers                      4.46.3

二、Lora 合并代码实现

import torch
from peft import PeftModel
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
from transformers.generation.utils import GenerationConfig


def apply_lora(model_name_or_path, output_path, lora_path):
    print(f"Loading the base model from {model_name_or_path}")
    base_tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False, trust_remote_code=True)
    # base = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.bfloat16, trust_remote_code=True)
    base = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True)

    print(f"Loading the LoRA adapter from {lora_path}")

    lora_model = PeftModel.from_pretrained(
        base,
        lora_path,
        torch_dtype=torch.float32,
    )

    print("Applying the LoRA")
    model = lora_model.merge_and_unload()

    print(f"Saving the target model to {output_path}")
    model.save_pretrained(output_path)
    base_tokenizer.save_pretrained(output_path)


if __name__ == "__main__":
    model_name_or_path = "/nasdata/zhanjie/models/Qwen2.5-32B-Instruct"
    output_path = "./output"
    lora_path = "/nasdata/zhanjie/models/qwen2_5-32B-lora-1-0-7"
    apply_lora(model_name_or_path, output_path, lora_path)
    print("Done")
### 关于 LoRA 微调中合并权重时层名不正确的问题 在使用 LoRA 进行微调的过程中,如果遇到合并权重时层名错误的情况,通常是因为目标模块(`target_modules`)的定义与实际模型结构不符。以下是可能的原因以及解决方案: #### 1. **确认 `target_modules` 参数** 配置中的 `target_modules` 定义了哪些层会被应用 LoRA 修改。这些层通常是注意力机制的相关部分,例如 `q_proj`, `k_proj`, `v_proj` 等[^3]。如果指定的层名与模型的实际架构不匹配,则可能导致无法正确加载或保存权重。 #### 解决方法: - 查阅所使用的预训练模型文档,了解其内部实现的具体层名称。 - 如果不确定具体的层名,可以通过打印模型结构来验证。例如,在 PyTorch 中可以运行以下代码查看模型各层名称: ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("your_model_name") print(model) ``` #### 2. **检查 LoRA 权重文件** 当使用 PEFT 工具包时,`save_pretrained` 方法仅保存 LoRA 层的权重[^2]。这意味着在加载或合并权重时,需要确保基础模型和 LoRA 权重之间的对应关系一致。 #### 解决方法: - 加载 LoRA 权重前,先验证基础模型是否已正确初始化。 - 使用如下方式加载并合并权重: ```python from peft import PeftModel base_model = AutoModelForCausalLM.from_pretrained("base_model_path") lora_model = PeftModel.from_pretrained(base_model, "lora_weights_path") # 合并权重到基础模型 merged_model = lora_model.merge_and_unload() ``` #### 3. **调整 LoRA 配置参数** 在某些情况下,即使层名正确,也可能因为其他配置参数不当而导致问题。例如,`r` 和 `lora_alpha` 的设置会影响矩阵分解的效果,进而影响最终的权重合并过程[^3]。 #### 解决方法: - 调整 `LoraConfig` 的参数以适配当前任务需求。例如: ```python from peft import LoraConfig, TaskType config = LoraConfig( task_type=TaskType.CAUSAL_LM, target_modules=["q_proj", "k_proj", "v_proj"], inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) ``` #### 4. **调试日志分析** 若上述方法仍未能解决问题,建议启用详细的调试日志以便定位具体原因。PEFT 提供的日志功能可以帮助识别潜在冲突或错误。 --- ### 总结 通过以上步骤,可以从多个角度排查并解决 LoRA 微调过程中因层名错误引发的权重合并失败问题。核心在于确保 `target_modules` 设置无误,并合理利用工具包提供的接口完成权重管理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值