大模型lora训练、权重保存、训练方法与完整训练代码(基于llama模型)


前言

本篇文章介绍lora训练与huggingface训练源码构建,以及权重保存、数据格式与完整训练代码内容!


一、构建lora训练模式

1、调用代码

这步较为简单,我们构建lora,只需调用peft库,可帮忙实现。我这里也给出了lm_head是否训练方法,具体代码如下:

if training_args.use_lora: # 使用lora模型梯度即使是True也会会变成False,只有lora变量为True
   model = load_lora_mode(model,training_args,device_map
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tangjunjun-owen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值