参数估计之最大似然估计入门详解

参数估计之最大似然估计

(本章内容是后面logistic回归和softmax回归的基础)
基本思路:对于离散总体,设有样本观测值 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots ,x_n x1,x2,,xn,我们写出该观测值出现的概率,它一般依赖于某个或某些参数,用 θ \theta θ表示,将该概率看成 θ \theta θ的函数,用 L ( θ ) L(\theta) L(θ)表示,称为似然函数
L ( θ ) = P ( X 1 = x 1 , ⋯   , X n = x n ; θ ) (1) L(\theta)=P(X_1=x_1,\cdots ,X_n=x_n;\theta) \tag{1} L(θ)=P(X1=x1,,Xn=xn;θ)(1)
求最大似然估计就是找 θ \theta θ的估计值 θ ^ = θ ^ ( x 1 , ⋯   , x n ) \hat {\theta}=\hat {\theta}(x_1,\cdots ,x_n) θ^=θ^(x1,,xn)使得上式的 L ( θ ) L(\theta) L(θ)达到最大。

例子1

设产品分为合格品与不合格品两类,我们用一个随机变量 X X X来表示某个产品经检查后的不合格品数,则 X = 0 X=0 X=0表示合格品, X = 1 X=1 X=1表示不合格品,则 X X X服从二点分布 b ( 1 , p ) b(1,p) b(1,p),其中 p p p是未知的不合格率。先抽取n个产品看是否合格,得到样本 x 1 , ⋯   , x n x_1,\cdots ,x_n x1,,xn,这批观测值发生的概率为:
P ( X 1 = x 1 , ⋯   , X n = x n ; p ) = ∏ i = 1 n p x i ( 1 − p ) 1 − x i = p ∑ i = 1 n x i ( 1 − p ) n − ∑ i = 1 n x i (2) \begin{aligned} P(X_1=x_1,\cdots ,X_n=x_n;p) &= \prod_{i=1}^np^{x_i}(1-p)^{1-x_i}\\ &=p^{\sum_{i=1}^nx_i}(1-p)^{n-\sum_{i=1}^nx_i} \tag{2} \end{aligned} P(X1=x1,,Xn=xn;p)=i=1npxi(1p)1xi=pi=1nxi(1p)ni=1nxi(2)
似然函数为
L ( p ) = p ∑ i = 1 n x i ( 1 − p ) n − ∑ i = 1 n x i (3) L(p)=p^{\sum_{i=1}^nx_i}(1-p)^{n-\sum_{i=1}^nx_i} \tag{3} L(p)=pi=1nxi(1p)ni=1nxi(3)
要求 p p p使得 L ( p ) L(p) L(p)最大,可将 ( 3 ) (3) (3)两端取对数并关于 p p p求导令其为0(这里其实省略了证明 ( 3 ) (3) (3)是一个凹函数的过程),得到似然方程
∂ L ( p ) ∂ p = 0 (4) \frac{\partial{L(p)}}{\partial{p}}=0 \tag{4} pL(p)=0(4)
求解 ( 4 ) (4) (4)即可得到 p p p的最大似然估计,为
p ^ = p ^ ( x 1 , ⋯   , x n ) = 1 n ∑ i = 1 n x i = x ˉ (5) \hat{p}=\hat{p}(x_1,\cdots,x_n)=\frac{1}{n}\sum _{i=1}^{n}x_i=\bar x \tag{5} p^=p^(x1,,xn)=n1i=1nxi=xˉ(5)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值