catboost 与 lightgbm 超参调研

本文探讨了CatBoost和LightGBM的超参数优化。针对CatBoost,提到了官方文档以及使用HyperOpt调参的方法。对于LightGBM,提供了相关资源链接,包括在Kaggle上的应用实例。
摘要由CSDN通过智能技术生成

catboost

  • catboost 超参官方文档

https://catboost.ai/docs/concepts/python-reference_parameters-list.html

  • 用HyperOpt调参的博客

https://effectiveml.com/using-grid-search-to-optimise-catboost-parameters.html

    "catboost": {
   
      "max_depth": {
   "_type": "int_quniform", "_value": [1,15],"_default": 7},
      "learning_rate": {
   "_type": "loguniform", "_value": [1e-3,0.2],"_default": 0.1},
      "_n_estimators-lr_ratio": {
   "_type": "loguniform", "_value": [0.1,100],"_default": 10},
      "subsample":  {
   "_type": "quniform"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值