[补充内容]关于使用matlab进行方程组求解的线性代数相关知识补充——特征值与特征向量

前言

根据李永乐老师课程学习。主要记载特征值与特征向量相关的性质、定理等知识,不会进行定理推导、证明。

向量内积

数量积、点积
在这里插入图片描述
向量的内积
定义:设α=(a1,a2,…,anT ;β=(b1,b2,…,bnT
    令(α,β)=a1b1+a2b2+…+anbn
    称为向量α和β的内积。
内积的性质
 (1)(α,β)=(β,α)
 (2)(α+β,γ)=(α,γ)+(β,γ)
 (3)(kα,β)=k(α,β)
 (4)(α,α)≥0且(α,α)=0⇔α=0
 (5)如果(α,β)=0,则称α与β正交
在这里插入图片描述
下面等式仅在αβ线性相关时成立。
在这里插入图片描述
定理:若n维向量α12…αr是一组两两正交的非零向量,则α12…αr线性无关。
施密特正交化
对线性无关的α12α3变成两两垂直长度为1的向量的方法。
在这里插入图片描述

正交矩阵

定义:设A是n阶矩阵,满足AAT=ATA=E,称A为正交矩阵
性质:
 A是正交矩阵⇔AT=A-1
 A=(α12α3)是正交矩阵⇔α12α3都是单位向量,且两两正交。
 如果A是正交矩阵,则|A|=1或-1。
 若A,B都是正交矩阵,则AB也是正交矩阵。
规范正交基:设e1,e2…en是向量空间的一个基,如果(ei,ej)=1(i=j)或0(i≠j),则称e1,e2…en为规范正交基。

特征值、特征向量

定义:设A是n阶矩阵,α是n维非0列向量,满足Aα=λα,则称λ是矩阵A的特征值,α是矩阵A对应于特征值λ的特征向量。
如果α是A的特征向量,k≠0时,kα也是A的特征向量。
如果α1,α2是A的特征向量,对于任意的k1,k2满足k1α1+k2α2≠0,k1α1+k2α2仍未A的特征向量。
求解α可以推导等价为求解(λE-A)α=0的非零解。
 由|λE-A|=0求解特征值λ(共n个,含重根)
 由|λiE-A|x=0求基础解系,即λi线性无关的特征向量
定理:设A是n阶矩阵
 (1)∑λi=∑aii=trA(对角线元素的和又称迹trA)
 (2)∏λi=|A|
定理:A可逆⇔A的n个特征值全不为0。
定理:矩阵A对应于不同特征值的特征向量线性无关。

相似矩阵

设A、B都是n阶矩阵,如果存在可逆矩阵P,使得 P-1AP=B,就称矩阵A相似于矩阵B,B是A的相似矩阵。记成A~B
相似的基本性质:
 A~A
 如果A ~ B,则B ~ A
 如果A ~ B,B~C则A ~C。
 如果A ~ B,那么
   A2 ~ B2
   A+kE ~ B+kE
   如果A可逆,A-1 ~ B-1
   如果A1 ~ B1,A2 ~ B2
      在这里插入图片描述
A~B的必要条件(可推出,不可逆)
 特征值相同
 秩相等
 |A|=|B|
 trA=trB

A ~ ∧ ⇔存在可逆矩阵P,使得P-1AP=∧。其中P是有由A的特征向量组成,∧的对角线元素是A的特征值,顺序与P中特征向量对应。
定理:A ~ ∧ ⇔A有n个线性无关的特征向量。
定理:如果λ是A的k重特征值,则λ至多有k个线性无关的特征向量。
定理:A ~ ∧ ⇔如果λ是A的k重特征值,则λ必有k个线性无关的特征向量。

实对称矩阵

定理:若A是n阶实对称矩阵,则A的特征值都是实数。
定理:A是实对称矩阵,λ1与λ2是A不同的特征值,α1,α2分别是属于λ1与λ2的特征向量,那么α1,α2一定相互正交。
定理:对任一个n阶实对称矩阵A,总存在n阶正交矩阵Q,使Q-1AQ=diag(λ12,…,λn)
diag(λ12,…,λn)指对角矩阵。
实对称矩阵一定与对角矩阵相似。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值