opencv4.5.1 带cuda11.0 cudnn8.0.5编译

参考链接

https://blog.csdn.net/fixed_zhang/article/details/110428259?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.control#commentBox

操作步骤

  1. 码云上下载opencv + opencv_contrib源码(速度比github快)
git clone -b 4.5.1 https://gitee.com/Tengyun_Mo/opencv.git
mv opencv opencv-4.5.1
cd opencv-4.5.1
git clone -b 4.5.1 https://gitee.com/Tengyun_Mo/opencv_contrib.git
mv opencv_contrib opencv_contrib-4.5.1
mkdir build
cd build
  1. anzhuayilai
sudo apt install -y build-essential cmake git pkg-config libopenexr-dev libblas-dev 
sudo apt install -y python-dev python-numpy libtbb2 libtbb-dev
sudo apt install -y libjpeg-dev libpng-dev libtiff-dev libdc1394-22-dev libjasper-dev
sudo apt install -y libavcodec-dev libavformat-dev libswscale-dev libavutil-dev
sudo apt-get install libgphoto2-dev libeigen3-dev libhdf5-dev doxygen

sudo apt install -y \
        libx264-dev \
        mesa-utils \
        libgtk2.0-dev \
        libxvidcore-dev \
        yasm \
        libxine2-dev \
        libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev \
        libv4l-dev \
        libfaac-dev \
        libmp3lame-dev \
        libopencore-amrnb-dev \
        libtheora-dev \
        libvorbis-dev \
        ffmpeg \
        libeigen3-dev libeigen3-doc \
		liblapack-dev \
        tesseract-ocr \
        tesseract-ocr-jpn \
        libgflags-dev \
        libleptonica-dev \
        libtesseract-dev \
        gphoto2 \
        liblapacke-dev \
        libgoogle-glog-dev \
        libprotobuf-dev \
        libprotoc-dev \
        protobuf-compiler \
        ccache \
        libgphoto2-dev \
        libavresample-dev \
        libatlas-base-dev \
        gfortran

  1. cmake生成makefile文件
cmake -DCMAKE_BUILD_TYPE=RELEASE     -DCMAKE_INSTALL_PREFIX=/usr/local/opencv-4.5.1     -DOPENCV_EXTRA_MODULES_PATH=../opencv_contrib-4.5.1/modules ..     -DWITH_CUDA=1  -DWITH_CUDNN=1 -DWITH_V4L=1 -DOPENCV_DNN_CUDA=1 -D CUDNN_VERSION='8.0.5' -DCUDNN_INCLUDE_DIR='/usr/local/cuda/include/'  -DENABLE_FAST_MATH=1     -DCUDA_FAST_MATH=1     -DWITH_CUBLAS=1    -DCUDA_nppi_LIBRARY=true -DOPENCV_GENERATE_PKGCONFIG=1     -DCUDA_GENERATION=Pascal ..

查看cuda与cudnn是否支持
在这里插入图片描述

  1. 编译源码
make -j4
  1. 安装opencv
sudo make install
  1. huanjingdajian
# 编辑/etc/bash.bashrc
sudo gedit /etc/bash.bashrc
# 在文件末尾添加
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/opencv-4.5.1/lib/pkgconfig
export PKG_CONFIG_PATH
# 退出并更新
sudo updatedb

# 编辑/etc/ld.so.conf.d/opencv.conf
sudo gedit /etc/ld.so.conf.d/opencv.conf
# 在文件末尾添加
/usr/local/opencv-4.5.1/lib
# 退出并更新
sudo ldconfig

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: OpenCV是一个开源的计算机视觉和机器学习库,可以方便地处理图像和视频。而CUDA(Compute Unified Device Architecture)是由NVIDIA开发的一种并行计算架构,可以加速图形处理器(GPU)上的计算任务。 OpenCV 4.5.1是OpenCV的一个版本,它提供了丰富的功能和算法,用于图像和视频处理、特征提取、目标检测等任务。这个版本可以在Windows 10操作系统上使用,并且可以与Visual Studio 2017集成,提供开发环境和调试工具。 CUDA 10.0是NVIDIA的一个版本,它支持NVIDIA GPU上的并行计算任务。它允许开发人员使用C语言、C++或CUDA自己的扩展语言编写并行计算代码,以加速计算密集型任务。例如,在图像处理中,可以使用CUDA加速OpenCV算法,从而提高计算性能。 而cuDNNCUDA Deep Neural Network library)是NVIDIA专门为深度学习任务开发的一个库。它提供了一组高性能的深度神经网络的基本操作和优化算法,可以与CUDAOpenCV结合使用。 综上所述,OpenCV 4.5.1可以与CUDA 10.0和cuDNN 7.6.0集成使用。开发者可以在Visual Studio 2017中使用这些工具和库进行图像处理和机器学习任务的开发和优化。通过使用CUDA加速,可以提高计算性能,而cuDNN可以提供深度学习任务所需的算法和操作。 ### 回答2: OpenCV 4.5.1是一个计算机视觉库,用于在计算机视觉和机器学习项目中进行图像和视频处理。VS2017是一个集成开发环境(IDE),用于Windows操作系统上的软件开发。CUDA(Compute Unified Device Architecture)是一个用于GPU计算的并行计算平台和API模型。CUDNN是NVIDIA深度神经网络库,用于在GPU上加速深度学习任务。 在Windows 10上使用VS2017来编译OpenCV 4.5.1,并在CUDA 10.0和CUDNN 7.6.0的支持下进行构建可以提供更好的计算性能和加速。CUDA 10.0提供了与CUDA架构和驱动程序的兼容性,并支持许多NVIDIA GPU。CUDNN 7.6.0是基于CUDA的深度神经网络库,可以加速深度学习任务的训练和推理。 使用VS2017编译OpenCV可以让开发者方便地在Windows平台上进行开发和调试。VS2017提供了强大的集成开发环境,它可以帮助开发者编写、调试和测试程序。通过配置CUDA 10.0和CUDNN 7.6.0来支持OpenCV的GPU加速,可以进一步提高图像和视频处理的速度和效率。 总结来说,使用OpenCV 4.5.1、VS2017、Windows 10、CUDA 10.0和CUDNN 7.6.0可以实现在Windows平台上的高效计算机视觉和机器学习开发。这种配置可以提供更好的性能和加速,特别是在需要处理大量图像和视频、进行深度学习任务的情况下。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值