论文笔记整理:胡楠,东南大学博士。

来源:ISWC 2020
动机
像Wikidata这样的现代知识图已经捕获了数十亿个RDF三元组,但是它们仍然缺乏对大多数关系的良好覆盖。同时在NLP研究的最新进展表明,可以轻松地查询神经语言模型以获得相关知识而无需大量的训练数据。这项论文工作综合这些进展通过在知识图谱的顶部创建一个结合BERT的混合查询应答系统来改善补全查询结果,将知识图谱中的有价值的结构和语义信息与语言模型中的文本知识相结合,以达到高精度查询结果。当前处理不完整知识图谱的标准技术是(1)需要大量训练数据的关系提取,或者(2)知识图谱嵌入,这些知识在简单的基准数据集之外就难以成功。论文为此提出的混合系统KnowlyBERT仅需要少量的训练数据,并且在Wikidata上进行实验,结果表明优于最新技术。
模型

系统概述图如上所示。作为KnowlyBERT的输入,用户可以向系

本文介绍了ISWC2020论文KnowlyBERT,它结合BERT和知识图谱,解决查询补全问题。通过使用语言模型和少量训练数据,该模型在Wikidata上表现出色,精度超过47.5%,优于传统方法。模型通过SPARQL查询,自动生成模板,结合实体上下文信息,过滤无关结果,最后进行阈值处理和语义类型过滤,以提高查询结果准确性。
最低0.47元/天 解锁文章
1440

被折叠的 条评论
为什么被折叠?



