KG-BERT for Knowledge Graph Completion 笔记

Abstract

1、采用预训练的语言模型BERT来补全知识图谱

2、将知识图谱中的三元组视为文本序列,并提出新框架KG-BERT

3、方法:用三元组的实体描述和关系描述作为输入,利用KG-BERT语言模型计算三元组的评分函数

资料查阅:

预训练语言模型 PLMs:预训练模型就意味着先学习人类的语言知识,然后再代入到某个具体任务。

1)基于大规模文本,预训练得出通用的语言表示;2)通过微调的方式,将学习到的知识传递到不同的下游任务

预训练模型的三个关键技术:①Transformer ②自监督学习 ③微调

Introduction

1、KG通常是一个多关系图,KG通常是一个多关系图,包含实体作为节点,关系作为边。

每条边都表示为一个三元组(head entity, relation, tail entity)(简称(h, r, t)),表示两个实体的关系

例如(Steve Jobs, founded, Apple Inc.)

2、知识图谱补全的任务:评估知识图中未出现的三元组的合理性

3、知识图谱补全的常用方法:

”知识图嵌入“它将三元组中的实体和关系表示为实值向量,并用这些向量评估三元组的真实性(Wang et al. 2017)

缺陷:只观察到三元组的结构信息,存在知识图谱的稀疏性问题

BERT的优势:通过掩码语言建模和下一句预测对双向Transformer编码器进行预训练,它可以在预先训练的模型权重中获取丰富的语言知识。

### 基于强化学习的时间知识图谱问答模型 RTA 的实现与应用 #### 时间知识图谱的重要性 时间知识图谱能够捕捉事件随时间的变化和发展,对于理解动态过程至关重要。通过构建包含时间维度的知识图谱,可以更精确地表示实体间的关系及其演变情况[^1]。 #### 强化学习的作用 利用强化学习算法来增强时间知识图谱问答系统的性能是一种有效的方法。该方法允许系统根据反馈不断调整自身的策略,在面对复杂查询时做出更加合理的决策。具体来说,强化学习可以帮助优化路径选择、关系预测以及答案生成等多个方面的工作流程。 #### 模型架构设计 为了有效地处理涉及时间因素的问题,RTA 模型通常会采用一种混合结构,即结合传统的神经网络组件(如LSTM 或 Transformer)用于编码输入序列中的时间和上下文信息,并引入基于Q-learning或者Policy Gradient的强化学习模块来进行下一步动作的选择和评估。这种组合不仅提高了对长期依赖性的建模能力,还增强了应对不确定性环境下的适应性和鲁棒性[^2]。 ```python import torch.nn as nn from transformers import BertModel, BertTokenizer class TimeQA(nn.Module): def __init__(self): super(TimeQA, self).__init__() self.bert = BertModel.from_pretrained('bert-base-uncased') def forward(self, input_ids, attention_mask=None): outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) return outputs.last_hidden_state[:, 0, :] ``` 此代码片段展示了如何初始化一个简单的BERT模型作为时间感知问答的基础框架的一部分。实际的应用中还需要加入更多针对特定任务定制化的层和技术细节以完成整个RTA体系的设计[^3]。 #### 应用案例分析 在智能客服领域,RTA 可以为用户提供更为精准的历史订单追踪服务;医疗健康行业中,则可用于辅助医生回顾患者病史并提供个性化的治疗建议;金融风控部门也能借助此类技术更好地识别潜在风险信号,提前采取预防措施等。总之,随着应用场景日益多样化,基于强化学习的时间知识图谱问答模型将在众多行业发挥重要作用[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaser_Hc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值