Abstract
1、采用预训练的语言模型BERT来补全知识图谱
2、将知识图谱中的三元组视为文本序列,并提出新框架KG-BERT
3、方法:用三元组的实体描述和关系描述作为输入,利用KG-BERT语言模型计算三元组的评分函数
资料查阅:
预训练语言模型 PLMs:预训练模型就意味着先学习人类的语言知识,然后再代入到某个具体任务。
1)基于大规模文本,预训练得出通用的语言表示;2)通过微调的方式,将学习到的知识传递到不同的下游任务
预训练模型的三个关键技术:①Transformer ②自监督学习 ③微调
Introduction
1、KG通常是一个多关系图,KG通常是一个多关系图,包含实体作为节点,关系作为边。
每条边都表示为一个三元组(head entity, relation, tail entity)(简称(h, r, t)),表示两个实体的关系
例如(Steve Jobs, founded, Apple Inc.)
2、知识图谱补全的任务:评估知识图中未出现的三元组的合理性
3、知识图谱补全的常用方法:
”知识图嵌入“它将三元组中的实体和关系表示为实值向量,并用这些向量评估三元组的真实性(Wang et al. 2017)
缺陷:只观察到三元组的结构信息,存在知识图谱的稀疏性问题
BERT的优势:通过掩码语言建模和下一句预测对双向Transformer编码器进行预训练,它可以在预先训练的模型权重中获取丰富的语言知识。