-
Exponentially weighted moving average
average is a single data point;
moving average is a sequence of data point;
weighted moving average means the process calculating average 给不同元素不同权重;
exponential weighted moving average 指计算权重的方式是指数方式;
先看这四个概念中最核心的average,求average的目的在物理意义上是smoothing the data: reduce the noise in noisy time-series data.
-
EWMA formula
S t = a x t + ( 1 − a ) S t − 1 S_t=ax_t+(1-a)S_{t-1} St=axt+(1−a)St−1
最新值给予权重 a a a;
前值给予权重 1 − a 1-a 1−a;
指数体现在前值中。
The degree of mixing is controlled by the parameter a a a (value between 0-1).
If a=10% (small), most of the contribution will come from the previouse value of the signal. In this case, “smoothing” will be very strong.
If a=90%(large), most of the contribution will come from the current value of the signal. In this case, “smoothing” will be minimum.
-
Exponential
If n n n is a positive integer and x x x is any real number, then x n x^n xn corresponds to repeated mutiplication
x n = x ∗ x ∗ . . . ∗ x x^n=x*x*...*x xn=x∗x∗...∗x
We can call this “x raised to the power of n”;or “x to the power of n”;
or “x to the n”;
Here , x is the
base
and n is theexponent
or thepower
.An exponential function can describe growth or decay.
g ( x ) = ( 1 2 ) x g(x)=(\frac{1}{2})^x g(x)=(21)x
is an example of exponential decay.
f ( x ) = 2 x f(x)=2^x f(x)=2x
is an example of exponential growth.In the exponential growth of f ( x ) f(x) f(x) , the function doubles every time you add one to its input x x x;
In the exponential decay of g ( x ) g(x) g(x), the function shrinks in half every time you add one to its input x x x.
The presence of this doubling time or half-life is characteristic of exponential functions, indicating how fast they grow or decay.
指数方程用于描述增长或衰减的速度。
-
References
理解exponential weighted || 指数
最新推荐文章于 2025-04-13 21:09:51 发布