理解difference between Regression Analysis and Machine Learning

  • Overview

    查看Regression Analysis的定义时发现,Regression analysis is a set of statistical processes for estimating the relationship between a dependent variable and one or more independent variables.

    那这不就是机器学习嘛?

    再看一下Machine Learning的定义,Machine Learning (ML) is the study of computer algorithms that improve automatically through experience and by the use of data.

  • Regression Versus Classification ML

    从某个角度,regression是ML中的一个子类, or one of the ML “algorithms”.

    Regression and Classification are categorized under the same umbrella of supervised machine learning.

    The main difference between them is that the output variable in regression is numerical (or continuous) while that for classification is categorical (or discrete).

  • Statistics and Machine Learning

    The major difference between machine learning and statistics is their purpose.

    Machine Learning models are designed to make the most accurate predictions possible.

    Statistical models are designed for inference about the relationships between variabels.

    Statistics is the mathematical study of data; you can’t do statistics unless you have data;

    Statistical model is a model for the data that is used either to infer something about the relationship within the data or to create a model that is able to predict feature values.

  • References

  1. Is Regression Analysis Really Machine Learning?
  2. Regression Versus Classification Machine Learning: What’s the Difference?
  3. The Actual Difference Between Statistics and Machine Learning
  4. Statistics versus machine learning
  5. When should linear regression be called “machine learning”?
  6. Regression vs. Classification in Machine Learning
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值