视觉SLAM十四讲:从理论到实践(Chapter4:李群与李代数)

前言

学习笔记,仅供学习,不做商用,如有侵权,联系我删除即可

一、目标

1. 理解李群与李代数的概念,掌握SO(3)、 SE(3)与对应李代数的表示方式。
2. 理解BCH近似的意义。
3. 学会在李代数上的扰动模型。
4. 使用Sophus对李代数进行运算。

二、李群与李代数基础

旋转矩阵自身带约束(正交且行列式为1),当它作为优化变量时,会引入额外的约束,使优化变得困难。通过李群-李代数间的转换关系,可以把位姿估计变成无约束的优化问题。

2.1 群

群(Group)是一种集合加上一种运算的代数结构,集合记作A,运算记作·,那么群可以计算G=(A,·)。群运算满足“封结幺逆”的条件:

 李群(Lie Group):

  • 具有连续(光滑)性质的群
  • 既是群,也是流形。
  • 直观上看,一个刚体能够连续在空间中运动,故SO(3)和SE(3)都是李群。
  • 但是SO(3)和SE(3)只有定义良好的乘法
  • 没有加法,难以进行取极限、求导的操作。

2.2 李代数

与李群对应的一种结构,位于向量空间。

  • 通常记作小写的so(3)和se(3),通常用哥特体写出。
  • 实际上是李群单位元处的正切空间。

因此,李群和李代数之间存在指数映射关系。哥特体的李代数so(3)代表一个能够表示相机位姿的三维向量。

李代数的性质:

李括号:

三、指数与对数映射

3.1 SO(3)上的指数映射

SO(3)上的指数映射其实就是罗德里格斯公式。

对应的对数映射:

3.2 SE(3)上的指数映射

 J:Jacobian矩阵,只和旋转有关。

四、李代数求导与扰动模型

4.1 BCH公式与近似形式

左乘模型和右乘模型不一样,现在基本上都是左乘模型。

李代数上做加法等价于在李群上做了一个右乘,但右乘上多乘一个右雅可比矩阵。

se(3)的形式(SLAM中最常用的公式,只记左乘就可以,其实是一样的):

4.2 李代数求导

导数模型:对R对应的李代数加上小量,求相对于李代数小量的变化率。

​​​​​​​

扰动模型:对R左乘或右乘一个小量,求相对于小量的李代数的变化率。

设存在一个左扰动\Delta R,对应的李代数为\varphi,对\varphi求导:

导数模型更精确,扰动模型编程时更常用。

SE(3)上的李代数求导

矩阵求导规则(推导中需要):

 4.3 相似变换群与李代数

多了一个尺度自由度s,即Sim(3)是7自由度变换:

总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DayDayUp..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值