时域表示
计算如下有限长序列的 L 1 L_1 L1范数、 L 2 L_2 L2范数和 L ∞ L_{\infty} L∞范数:
(a)
{ x 1 [ n ] } = { 4.50 − 2.68 − 0.14 3.91 2.62 − 0.43 − 4.81 3.21 − 0.55 } \{x_1[n]\}=\{4.50 \quad-2.68 \quad-0.14 \quad3.91 \quad2.62\quad-0.43\quad-4.81\quad3.21\quad-0.55\} {
x1[n]}={
4.50−2.68−0.143.912.62−0.43−4.813.21−0.55}
(b)
{ x 2 [ n ] } = { 0.92 2.34 3.37 1.90 − 2.59 − 0.75 3.48 3.33 } \{x_2[n]\}=\{0.92\quad2.34\quad3.37\quad1.90\quad-2.59\quad-0.75\quad3.48\quad3.33\} {
x2[n]}={
0.922.343.371.90−2.59−0.753.483.33}
解:
∥ x ∥ = ( ∑ − ∞ ∞ ∣ x [ n ] ∣ p ) 1 / p \lVert x \rVert =(\sum_{-\infty}^{\infty}|x[n]|^p)^{1/p} ∥x∥=(−∞∑∞∣x[n]∣p)1/p
∥ x ∥ 1 = ∑ − ∞ ∞ ∣ x [ n ] ∣ ∥ x ∥ 2 = ( ∑ − ∞ ∞ ∣ x [ n ] ∣ 2 ) 1 / 2 \lVert x \rVert _1=\sum_{-\infty}^{\infty}|x[n]| \quad \lVert x \rVert _2=(\sum_{-\infty}^{\infty}|x[n]|^2)^{1/2} ∥x∥1=−∞∑∞∣x[n]∣∥x∥2=(−∞∑∞∣x[n]∣2)1/2
∥ x ∥ ∞ = ∣ x ∣ m a x \lVert x \rVert _\infty=|x|_{max} ∥x∥∞=∣x∣max
(a)
∥ x 1 ∥ 1 = 22.85 ∥ x 1 ∥ 2 = 9.1396 ∥ x 1 ∥ ∞ = 4.81 \lVert x_1 \rVert _1=22.85 \quad \lVert x_1 \rVert _2=9.1396 \quad \lVert x_1 \rVert _\infty=4.81 ∥x1∥1=22.85∥x1∥2=9.1396∥x1∥∞=4.81
(b)
∥ x 2 ∥ 1 = 18.68 ∥ x 2 ∥ 2 = 7.1944 ∥ x 2 ∥ ∞ = 3.48 \lVert x_2 \rVert _1=18.68 \quad \lVert x_2 \rVert _2=7.1944 \quad \lVert x_2 \rVert _\infty=3.48 ∥x2∥1=18.68∥x2∥2=7.1944∥x2∥∞=3.48
请参考这篇文章离散时间信号的时域表示
序列的运算
基本运算
已知序列
x [ n ] = { 2 , 0 , − 1 , 6 , − 3 , 2 , 0 } , − 3 ≤ n ≤ 3 y [ n ] = { 8 , 2 , − 7 , − 3 , 0 , 1 , 1 } , − 5 ≤ n ≤ 1 w [ n ] = { 3 , 6 , − 1 , 2 , 6 , 6 , 1 } , − 2 ≤ n ≤ 4 \begin{aligned} x[n]&=\{2,0,-1,6,-3,2,0\},\quad &-3 &\leq n \leq 3 \\ y[n]&=\{8,2,-7,-3,0,1,1\}, \quad &-5 &\leq n \leq 1 \\ w[n]&=\{3,6,-1,2,6,6,1\},\quad &-2 &\leq n \leq 4 \end{aligned} x[n]y[n]w[n]={
2,0,−1,6,−3,2,0},={
8,2,−7,−3,0,1,1},={
3,6,−1,2,6,6,1},−3−5−2≤n≤3≤n≤1≤n≤4
上述序列在给定区间以外的样本值都为零。生成以下序列:
( a ) c [ n ] = x [ n + 3 ] ( b ) d [ n ] = y [ n − 2 ] ( c ) e [ n ] = x [ − n ] ( d ) u [ n ] = x [ n − 3 ] + y [ n + 3 ] ( e ) v [ n ] = y [ n − 3 ] ⋅ w [ n + 2 ] ( f ) s [ n ] = y [ n + 4 ] − w [ n − 3 ] ( g ) r [ n ] = 3.9 w [ n ] \begin{aligned} &(a)c[n]=x[n+3] \\ &(b)d[n]=y[n-2]\\ &(c)e[n]=x[-n]\\ &(d)u[n]=x[n-3]+y[n+3]\\ &(e)v[n]=y[n-3] \cdot w[n+2]\\ &(f)s[n]=y[n+4]-w[n-3] \\ &(g)r[n]=3.9w[n] \end{aligned} (a)c[n]=x[n+3](b)d[n]=y[n−2](c)e[n]=x[−n](d)u[n]=x[n−3]+y[n+3](e)v[n]=y[n−3]⋅w[n+2](f)s[n]=y[n+4]−w[n−3](g)r[n]=3.9w[n]
解:
(a)
序列 x [ n ] x[n] x[n]左移 3 3 3个单位,则
c [ n ] = { 2 , 0 , − 1 , 6 , − 3 , 2 , 0 } , − 6 ≤ n ≤ 0 c[n]=\{2,0,-1,6,-3,2,0\},\quad -6 \leq n \leq 0 c[n]={
2,0,−1,6,−3,2,0},−6≤n≤0
(b)
序列 y [ n ] y[n] y[n]右移 2 2 2个单位,则
( b ) d [ n ] = { 8 , 2 , − 7 , − 3 , 0 , 1 , 1 } , − 3 ≤ n ≤ 3 (b)d[n]=\{8,2,-7,-3,0,1,1\}, \quad -3 \leq n \leq 3 (b)d[n]={
8,2,−7,−3,0,1,1},−3≤n≤3
(c)
序列 x [ n ] x[n] x[n]反褶,则
e [ n ] = { 0 , 2 , − 3 , 6 , − 1 , 0 , 2 } , − 3 ≤ n ≤ 3 e[n]=\{0,2,-3,6,-1,0,2\},\quad -3 \leq n \leq 3 e[n]={
0,2,−3,6,−1,0,2},−3≤n≤3
(d)
x [ n ] x[n] x[n]右移 3 3 3个单位得到
x [ n − 3 ] = { 2 , 0 , − 1 , 6 , − 3 , 2 , 0 } , 0 ≤ n ≤ 6 x[n-3]=\{2,0,-1,6,-3,2,0\},\quad 0 \leq n \leq 6 x[n−3]={
2,0,−1,6,−3,2,0},0≤n≤6
y [ n ] y[n] y[n]左移 3 3 3个单位得到
y [ n + 3 ] = { 8 , 2 , − 7 , − 3 , 0 , 1 , 1 } , − 8 ≤ n ≤ − 2 y[n+3]=\{8,2,-7,-3,0,1,1\}, \quad -8 \leq n \leq -2 y[n+3]={
8,2,−7,−3,0,1,1},−8≤n≤−2
则
u [ n ] = { 8 , 2 , − 7 , − 3 , 0 , 1 , 1 , 0 , 2 , 0 , − 1 , 6 , − 3 , 2 , 0 } − 8 ≤ n ≤ 6 u[n]=\{8,2,-7,-3,0,1,1,0,2,0,-1,6,-3,2,0\}-8 \leq n \leq 6 u[n]={
8,2,−7,−3,0,1,1,0,2,0,−1,6,−3,2,0}−8≤n≤6
(e)
y [ n ] y[n] y[n]右移 3 3 3个单位得到
y [ n − 3 ] = { 8 , 2 , − 7 , − 3 , 0 , 1 , 1 } , − 2 ≤ n ≤ 4 y[n-3]=\{8,2,-7,-3,0,1,1\}, \quad -2 \leq n \leq 4 y[n−3]={
8,2,−7,−3,0,1,1},−2≤n≤4
w [ n ] w[n] w[n]左移 2 2 2个单位得到
w [ n + 2 ] = { 3 , 6 , − 1 , 2 , 6 , 6 , 1 } , − 4 ≤ n ≤ 2 w[n+2]=\{3,6,-1,2,6,6,1\},\quad -4 \leq n \leq 2 w[n+2]={
3,6,−1,2,6,6,1},−4≤n≤2
则
v [ n ] = { 0 , 0 , − 8 , 4 , − 42 , − 18 , 0 , 0 , 0 } − 4 ≤ n ≤ 4 v[n]=\{0,0,-8,4,-42,-18,0,0,0\}\quad -4 \leq n \leq 4 v[n]={
0,0,−8,4,−42,−18,0,0,0}−4≤n≤4
(f)
y [ n ] y[n] y[n]左移 4 4 4个单位得到
y [ n + 4 ] = { 8 , 2 , − 7 , − 3 , 0 , 1 , 1 } , − 9 ≤ n ≤ − 3 y[n+4]=\{8,2,-7,-3,0,1,1\}, \quad -9 \leq n \leq -3 y[n+4]={
8,2,−7,−3,0,1,1},−9≤n≤−3
w [ n ] w[n] w[n]右移 3 3 3个单位得到
w [ n − 3 ] = { 3 , 6 , − 1 , 2 , 6 , 6 , 1 } , 1 ≤ n ≤ 7 w[n-3]=\{3,6,-1,2,6,6,1\},\quad 1 \leq n \leq 7 w[n−3]={
3,6,−1,2,6,6,1},1≤n≤7
则
s [ n ] = { 8 , 2 , − 7 , − 3 , 0 , 1 , 1 , 0 , 0 , 0 , − 3 , − 6 , 1 , − 2 , − 6 , − 6 , − 1 } , − 9 ≤ n ≤ 7 s[n]=\{8,2,-7,-3,0,1,1,0,0,0,-3,-6,1,-2,-6,-6,-1\},\quad -9 \leq n \leq 7 s[n]={
8,2,−7,−3,0,1,1,0,0,0,−3,−6,1,−2,−6,−6,−1},−9≤n≤7
(g)
r [ n ] = { 11.7 , 23.4 , − 3.9 , 7.8 , 23.4 , 23.4 , 3.9 } , − 2 ≤ n ≤ 4 r[n]=\{11.7 , 23.4 , -3.9, 7.8 ,23.4 ,23.4 ,3.9\},\quad -2 \leq n \leq 4 r[n]={
11.7,23.4,−3.9,7.8,23.4,23.4,3.9},−2≤n≤4
卷积运算
证明一个长度为 M M M的序列与一个长度为 N N N的序列进行卷积,可得到一个长度为 ( M + N − 1 ) (M+N-1) (M+N−1)的序列。
参考这篇文章中卷积后的长度部分
设 x [ n ] x[n] x[n]、 y [ n ] y[n] y[n]、 w [ n ] w[n] w[n]分别表示长度为 N 、 M N、M N、M和 L L L的三个序列,每个序列的第一个样本都出现在 n = 0 n=0 n=0处,序列 x [ n ] ∗ y [ n ] ∗ w [ n ] x[n]*y[n]*w[n] x[n]∗y[n]∗w[n]的长度是多少?
解:
借用上题的结论,两序列卷积后的长度为两序列长度之和减一。
令 h [ n ] = x [ n ] ∗ y [ n ] h[n]=x[n]*y[n] h[n]=x[n]∗y[n],则序列 h [ n ] h[n] h[n]的长度为 H = M + N − 1 H=M+N-1 H=M+N−1,所以序列 h [ n ] ∗ w [ n ] h[n]*w[n] h[n]∗w[n]的长度为 H + L − 1 = M + N + L − 2 H+L-1=M+N+L-2 H+L−1=M+N+L−2,所以序列 x [ n ] ∗ y [ n ] ∗ w [ n ] x[n]*y[n]*w[n] x[n]∗y[n]∗w[n]的长度为 M + N + L − 2 M+N+L-2 M+N+L−2
求下面序列与其自身的卷积
x [ n ] = { 1 ,   − 1 ,   1 } , − 1 ≤ n ≤ 1 x[n]=\{1, \, -1, \, 1\}, -1 \leq n \leq 1 x[n]={
1,−1,1},−1≤n≤1
解:

所以 x [ n ] ∗ x [ n ] = { 1 ,   − 2 ,   3 ↑ ,   − 2 ,   1 } − 2 ≤ n ≤ 2 x[n]*x[n]=\{1, \, -2, \, \mathop{3}\limits_{\uparrow}, \, -2, \, 1\} -2 \leq n \leq 2 x[n]∗x[n]={ 1,−2,↑3,−2,1}−2≤n≤2
可以观察到 x [ n ] x[n] x[n]它是左右对称的,事实上序列自己与自己卷积得到的序列都是左右对称的。
不理解上述计算卷积算法的,请参考用多项式乘法快速计算卷积。
设 y [ n ] = x 1 [ n ] ∗ x 2 [ n ] y[n]=x_1[n]*x_2[n] y[n]=x1[n]∗x2[n]且 v [ n ] = x 1 [ n − N 1 ] ∗ x 2 [ n − N 2 ] v[n]=x_1[n-N_1]*x_2[n-N_2] v[n]=x1[n−N1]∗x2[n−N2],试用 y [ n ] y[n] y[n]来表示 v [ n ] v[n] v[n]。
解:
首先从数学的角度对公式进行推导
y [ n ] = x 1 [ n ] ∗ x 2 [ n ] = ∑ m = − ∞ ∞ x 1 [ m ] x 2 [ n − m ] y[n]=x_1[n]*x_2[n]=\sum_{m=-\infty}^{\infty}x_1[m]x_2[n-m] y[n]=x1[n]∗x2[n]=m=−∞∑∞x1[m]x2[n−m]
v [ n ] = x 1 [ n − N 1 ] ∗ x 2 [ n − N 2 ] = ∑ m = − ∞ ∞ x 1 [ m − N 1 ] x 2 [ n − m − N 2 ] v[n]=x_1[n-N_1]*x_2[n-N_2]=\sum_{m=-\infty}^{\infty}x_1[m-N_1]x_2[n-m-N_2] v[n]=x1[n−N1]∗x2[n−N2]=m=−∞∑∞x1[m−N1]x2[n−m−N2]
令 k = m − N 1 k=m-N_1 k=m−