【Seq2Seq】卷积序列到序列学习

 🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎

📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃

🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​

📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】

 🖍foreword

✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。

如果你对这个系列感兴趣的话,可以关注订阅哟👋

文章目录

 简介

准备数据

构建模型

编码器

卷积块

编码器实现

解码器

解码器卷积块

解码器冲击

seq2seq-attention模型是一种基于seq2seq模型的改进版本,用于时间序列预测。在seq2seq-attention模型中,引入了注意力机制,以便更好地处理长序列和提高预测准确性。 在seq2seq-attention模型中,输入序列首先通过编码器(Encoder)进行编码,得到一个固定长度的向量表示。编码器可以使用循环神经网络(RNN)或卷积神经网络(CNN)等结构。然后,解码器(Decoder)根据编码器的输出和之前的预测结果,逐步生成输出序列。 在每个解码步骤中,注意力机制被用来对编码器的输出进行加权,以便更关注与当前解码步骤相关的输入信息。这样可以提高模型对于长序列的处理能力,并且能够更好地捕捉输入序列中的重要特征。 总结来说,seq2seq-attention模型是一种用于时间序列预测的改进版本,通过引入注意力机制来提高模型的性能。它可以根据输入序列生成相应的输出序列,并且能够更好地处理长序列和捕捉重要特征。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *2* [PyTorch搭建LSTM实现多变量多步长时间序列预测(五):seq2seq](https://blog.csdn.net/Cyril_KI/article/details/125095225)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [NLP自然语言处理之RNN--LSTM--GRU--seq2seq--attention--self attetion](https://blog.csdn.net/weixin_41097516/article/details/103174768)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonhhxg_柒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值