- 这篇博文是 DataWhale集成学习【下】 的第二部分,主要是介绍Blending的思想原理以及实现应用
- 参考资料为DataWhale开源项目:机器学习集成学习与模型融合(基于python)和scikit-learn官网
- 学习交流欢迎联系 obito0401@163.com
原理
当你在课堂上被老师叫起回答问题,而你因为种种原因暂时回答不上来时,你身边的同学都和你小声叨叨他们所理解的正确回答,你将这些综合起来判断得出了自己的结论,并且声情并茂地大声回答,这就是Blending
图片来源:https://blog.csdn.net/maqunfi/article/details/82220115)
方法
1. 将数据划分为训练集和测试集(test_set),其中训练集需要再次划分为训练集(train_set)和验证集(val_set);
2. 创建第一层的多个模型,这些模型可以是同质的也可以是异质的;
3. 使用train_set训练步骤2中的多个模型,然后用训练好的模型预测val_set和test_set得到val_predict,test_predict;
4. 创建第二层的模型,使用val_predict作为训练集训练第二层的模型;
5. 使用第二层训练好的模型对第二层测试集test_predict进行预测,该结果为整个测试集的结果
示例
- 工具包加载
# 加载相关工具包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use("ggplot")
import seaborn as sns
- 数据集创建
# 创建数据
from sklearn import datasets
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
data, target = make_blobs(n_samples=10000, centers=2, random_state=1, cluster_std=1.0 )
## 创建训练集和测试集
X_train1,X_test,y_train1,y_test = train_test_split(data, target, test_size=0.2,
random_state=1)
## 创建训练集和验证集
X_train,X_val,y_train,y_val = train_test_split(X_train1, y_train1, test_size=0.3,
random_state=1)
print("The shape of training X:",X_train.shape)
print("The shape of training y:",y_train.shape)
print("The shape of test X:",X_test.shape)
print("The shape of test y:",y_test.shape)
print("The shape of validation X:",X_val.shape)
print("The shape of validation y:",y_val.shape)
- 分类器设置
# 设置第一层分类器
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
clfs = [SVC(probability = True),RandomForestClassifier(n_estimators=5, n_jobs=-1,
criterion='gini'),KNeighborsClassifier()]
# 设置第二层分类器
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
- 第一层输出
# 输出第一层的验证集结果与测试集结果
val_features = np.zeros((X_val.shape[0],len(clfs))) # 初始化验证集结果
test_features = np.zeros((X_test.shape[0],len(clfs))) # 初始化测试集结果
for i,clf in enumerate(clfs):
clf.fit(X_train,y_train)
val_feature = clf.predict_proba(X_val)[:, 1]
test_feature = clf.predict_proba(X_test)[:,1]
val_features[:,i] = val_feature
test_features[:,i] = test_feature
- 最终输出
# 将第一层的验证集的结果输入第二层训练第二层分类器
lr.fit(val_features,y_val)
# 输出预测的结果
from sklearn.model_selection import cross_val_score
cross_val_score(lr,test_features,y_test,cv=5)