关于环境建模与并行计算的几点想法

本文介绍了CMU大学无人车项目中采用GPU加速的State Lattice并行算法,用于提高局部导航的计算速度和鲁棒性。通过对传统算法的优化,GPU加速使得路径规划效率提升,尤其是在Update阶段。同时,文章讨论了GPU加速在点云配准问题上的潜力,提出借鉴该方法来解决点云配准的计算复杂度问题。
摘要由CSDN通过智能技术生成

        最近在做局部导航方面的探索,偶然看到了CMU大学的无人车项目Autonomous Driving Motion Planning,其中对无人车的局部导航提出一套不错的实现方案。他们采用了一种基于GPU加速的State Lattice并行算法,对比与传统的State Lattice 实现方式,速度大大提高。

         一般来讲,无人导航车在非结构性环境下需要鲁棒性更强并且更偏底层的局部导航算法以应对其可能会遇到的问题,但是这种局部规划的计算量往往非常巨大,当无人车在高速运行时,一些常见的局部导航算法并不能够达到理论上的效果,而并行计算恰恰可以满足局部路径规划的这种大数据运算的需要。


               由于采用了GPU加速,上图中无人车的局部路径规划的候选路线大大增加,这对于提高其鲁棒性以及系统的实时性有很大帮助。

              CMU项目组采用的是一种基于State Lattice 的局部导航策略。其实这种策略就是一种离散的导航地图通过线性的路径规划链接起来的方式,它的一般原理如下所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值