最近在做局部导航方面的探索,偶然看到了CMU大学的无人车项目Autonomous Driving Motion Planning,其中对无人车的局部导航提出一套不错的实现方案。他们采用了一种基于GPU加速的State Lattice并行算法,对比与传统的State Lattice 实现方式,速度大大提高。
一般来讲,无人导航车在非结构性环境下需要鲁棒性更强并且更偏底层的局部导航算法以应对其可能会遇到的问题,但是这种局部规划的计算量往往非常巨大,当无人车在高速运行时,一些常见的局部导航算法并不能够达到理论上的效果,而并行计算恰恰可以满足局部路径规划的这种大数据运算的需要。
由于采用了GPU加速,上图中无人车的局部路径规划的候选路线大大增加,这对于提高其鲁棒性以及系统的实时性有很大帮助。
CMU项目组采用的是一种基于State Lattice 的局部导航策略。其实这种策略就是一种离散的导航地图通过线性的路径规划链接起来的方式,它的一般原理如下所示: