(B题)2024电工杯数学建模解题思路|大学生平衡膳食食谱的优化设计及评价|完整代码论文集合

我是Tina表姐,毕业于中国人民大学,对数学建模的热爱让我在这一领域深耕多年。我的建模思路已经帮助了百余位学习者和参赛者在数学建模的道路上取得了显著的进步和成就。现在,我将这份宝贵的经验和知识凝练成一份全面的解题思路与代码论文集合,专为本次赛题设计,旨在帮助您深入理解数学建模的每一个环节。

让我们先来分析本次的B题!

电工杯数学建模(AB两题)完整内容可以在文章末尾领取!

让我们来看看B题,B题的第一个问题是:膳食食谱的营养分析评价及调整。

  1. 首先,根据附件1和附件2的食物摄入记录,计算出男生和女生一天摄入的能量,以及各种营养素的摄入量。

  2. 根据附件3提供的学生食堂食物信息,计算出男生和女生一天在食堂就餐的能量及各种营养素的摄入量。

  3. 将计算得到的能量及各种营养素的摄入量与附件4中的参考摄入量进行比较,评价男生和女生的膳食是否达到科学合理的标准。

  4. 如果发现男生和女生的膳食摄入不足或过量的营养素,可以根据附件4中的评价过程,调整食谱中的食物种类或食用量,使其达到平衡膳食的要求。

  5. 进行调整后,再次计算男生和女生的能量及各种营养素的摄入量,并对调整后的食谱进行全面的膳食营养评价。

1)对附件 1、附件 2 两份食谱做出全面的膳食营养评价:

根据附件4中的平衡膳食基本准则和能量及各种营养素参考摄入量,可以计算出附件1和附件2中每种营养素的摄入量。根据附件3提供的高校学生食堂一日三餐主要食物信息统计表,可以计算出附件1和附件2中每种食物的营养素含量。然后根据膳食食谱营养评价过程,计算出附件1和附件2中每种营养素的百分比摄入量,与各项指标要求进行比较,得出膳食营养评价结果。

2)基于附件3,对附件1、附件2 两份食谱进行较少的调整改进,并且再做出全面的膳食营养评价。

根据附件3提供的高校学生食堂一日三餐主要食物信息统计表,可以结合附件1和附件2的食物摄入情况,对食谱进行调整改进。可以通过增加或减少某些食物的摄入量,或者更换其他食物,来达到平衡膳食的要求。然后再根据膳食食谱营养评价过程,计算出改进后的食谱中每种营养素的百分比摄入量,与各项指标要求进行比较,得出膳食营养评价结果。

膳食营养评价过程中,计算每种营养素的百分比摄入量的公式为:

百分比摄入量 = (食物中营养素含量/每日参考摄入量) * 100%

其中,食物中营养素含量可以通过附件3中提供的食物信息表中的可食部分量和价格来计算,每日参考摄入量可以通过附件4中提供的各种营养素的参考摄入量来获取。

import pandas as pd

# 读取附件1和附件2的数据
df_male = pd.read_excel('附件1.xlsx')
df_female = pd.read_excel('附件2.xlsx')

# 计算每种食物的总摄入量
df_male['总摄入量'] = df_male['可食部分量'] * df_male['食用份数']
df_female['总摄入量'] = df_female['可食部分量'] * df_female['食用份数']

# 计算每种食物的总能量值
df_male['总能量值'] = df_male['总摄入量'] * df_male['能量(kcal/100g可食部分)']
df_female['总能量值'] = df_female['总摄入量'] * df_female['能量(kcal/100g可食部分)']

# 计算每种营养素的总摄入量
df_male['总蛋白质'] = df_male['总摄入量'] * df_male['蛋白质(g/100g可食部分)']
df_female['总蛋白质'] = df_female['总摄入量'] * df_female['蛋白质(g/100g可食部分)']

df_male['总脂肪'] = df_male['总摄入量'] * df_male['脂肪(g/100g可食部分)']
df_female['总脂肪'] = df_female['总摄入量'] * df_female['脂肪(g/100g可食部分)']

df_male['总碳水化合物'] = df_male['总摄入量'] * df_male['碳水化合物(g/100g可食部分)']
df_female['总碳水化合物'] = df_female['总摄入量'] * df_female['碳水化合物(g/100g可食部分)']

# 计算每种营养素的百分比
df_male['蛋白质占总能量比例'] = df_male['总蛋白质'] / df_male['总能量值']
df_female['蛋白质占总能量比例'] = df_female['总蛋白质'] / df_female['总能量值']

df_male['脂肪占总能量比例'] = df_male['总脂肪
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值