03. 矩阵的逆

可逆矩阵

设矩阵A可逆,其逆矩阵用 A1 表示,以下均讨论方阵
则有性质

AA1=I

I为单位矩阵
首先说下什么情况是不可逆的

A=[1 236]

这是一个不可逆矩阵,为什么不可逆呢
假设存在逆矩阵 A1 ,也就是说
[1 236]A1=[1 001]

单位矩阵中的第一列应该是A中的两个列向量的线性组合,即
[1 0]=[1 2]x+[3 6]y

显然我们是找不到这样一个x,y的,所以A是不可逆的
更严谨一点的定义是,对于A,如果能找到一个二维的非0列向量x使得
Ax=0

则A为不可逆的
比如对于例子中,我们能找到
[1 236][3 1]=[0 0]

为什么这个定义是正确的呢。
假设A是可逆的,且存在一个非0向量x满足 Ax=0
那么
Ax=0A1Ax=0Ix=0x=0

这与x为非0向量矛盾,所以这个定义是正确的

求解逆矩阵

求解逆矩阵的过程仍为消元
设可逆矩阵

A=[1 237]

设其逆矩阵
A1=[a bcd]

满足下式
[1 237][a bcd]=[1 001]


[1 237][a b]=[1 0]

[1 237][c d]=[0 1]

对A进行增广,也即
[AI]=[1 2371001]

以增广矩阵的第一行第一列为主元进行消元
[1 2371001][1 0311201]

以矩阵的第二行第二列为主元进行消元,将矩阵的左半部分消元为单位矩阵
[1 0311201][1 0017231]

矩阵的右半部分就是要求的 A1
也即
A1=[7 231]

我们校验一下,计算 AA1
[1 237][7 231]=[1 001]

为什么这么计算是正确的呢
首先,我们对矩阵A进行了增广,得到增广的矩阵
[AI]

然后我们经过多次消元,而由消元矩阵的定义,这多次消元步骤等价于
E[AI]

E为消元矩阵
最后我们得到的是
[I?]

也即
E[AI]=[I?]

由于 EA=I ,所以E就是A的逆矩阵
所以 ?=EI=A1I=A1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值