84 矩阵的逆
在 82 我们看到, 矩阵与复数相仿, 有加、减、乘三种运算.
矩阵的乘法是否也和复数一样有逆运算呢? 这就是本节所要讨论的问题.
这一节讨论的矩阵, 如不特别说明, 都是 n × n n \times n n×n 矩阵.
我们知道,对于任意的 n n n 阶方阵 A \boldsymbol{A} A 都有
A E = E A = A , \boldsymbol{A} \boldsymbol{E}=\boldsymbol{E} \boldsymbol{A}=\boldsymbol{A}, AE=EA=A,
其中 E \boldsymbol{E} E 是 n n n 阶单位矩阵. 因之, 从乘法的角度来看, n n n
阶单位矩阵在 n n n 阶方阵中的地位类似于 1 在复数中的地位.一个复数
a ≠ 0 a \neq 0 a=0 的倒数 a − 1 a^{-1} a−1 可以用等式
a a − 1 = 1 a a^{-1}=1 aa−1=1
来刻画, 相仿地,我们引入
定义 7 n 7 \quad n 7n 阶方阵 A \boldsymbol{A} A 称为可逆的, 如果有 n n n 阶方阵
B B B, 使得
A B ˙ = B A ˙ = E ˙ , A \dot{B}=B \dot{A}=\dot{E}, AB˙=BA˙=E˙,
其中 E \boldsymbol{E} E 是 n n n 阶单位矩阵.
首先我们指出, 由于矩阵的乘法规则, 只有方阵才能满足 (1) (读者自己证明).
其次, 对于任意的矩阵 A \boldsymbol{A} A, 适合等式 (1) 的矩阵
B \boldsymbol{B} B 是唯一的 (如果有的话). 事实上, 假设
B 1 , B 2 \boldsymbol{B}_{1}, \boldsymbol{B}_{2} B1,B2 是两个适合 ( 1 ) (1) (1) 的矩阵, 就有
B 1 = B 1 E = B 1 ( A B 2 ) = ( B 1 A ) B 2 = E B 2 = B 2 . B_{1}=B_{1} E=B_{1}\left(A B_{2}\right)=\left(B_{1} A\right) B_{2}=E B_{2}=B_{2} . B1=B1E=B1(AB2)=(B1A)B2=EB2=B2.
定义 8 如果矩阵 B \boldsymbol{B} B 适合 (1), 那么 B \boldsymbol{B} B 就称为
A \boldsymbol{A} A 的逆矩阵, 记作 A − 1 \boldsymbol{A}^{-1} A−1.
下面要解决的问题是: 在什么条件下矩阵 A \boldsymbol{A} A 是可逆的? 如果
A \boldsymbol{A} A 可逆,怎样求 A − 1 \boldsymbol{A}^{-1} A−1 ?
定义 9 设 A i j A_{i j} Aij 是矩阵
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ) A=\left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right) A=
a11a21⋮an1
高等代数(四)-矩阵04:矩阵的逆
最新推荐文章于 2024-11-02 16:28:30 发布
本文探讨了矩阵的逆的概念,指出只有方阵才可能有逆,并介绍了矩阵可逆的充要条件——非退化。通过伴随矩阵和行列式的值,给出求解逆矩阵的公式。此外,还讨论了逆矩阵的性质,如乘积的逆、转置矩阵的逆以及线性方程组解的表达式。
摘要由CSDN通过智能技术生成