SVM 核函数相关知识

前面的文章讲述的都是将SVM用于线性可分或者近似线性可分的情况,对于非线性可分的情况,正是本文要讨论的内容。

核技巧

线性不可分问题是指不能用一个超平面将数据划分成两个部分,如下图所示:

在这里插入图片描述

但是如果我们对原始数据进行非线性变换,则有可能将原始数据映射到能够线性可分的空间中:

在这里插入图片描述

对于上面这样的数据,如何实现这样的变换?

设原始特征空间为: X ⊂ R 2 , x = ( x ( 1 ) , x ( 2 ) ) T ∈ X \mathcal X \subset R^2,x = (x^{(1)}, x^{(2)})^T \in \mathcal X XR2x=(x(1),x(2))TX,新的特征空间为: Z ⊂ R 2 , z = ( z ( 1 ) , z ( 2 ) ) T ∈ Z \mathcal Z \subset R^2,z = (z^{(1)}, z^{(2)})^T \in\mathcal Z ZR2z=(z(1),z(2))TZ

定义原空间到新空间的映射为:
z = ϕ ( x ) = ( ( x ( 1 ) ) 2 , ( x ( 2 ) ) 2 ) T z = \phi(x) = ((x^{(1)})^2, (x^{(2)})^2)^T z=ϕ(x)=((x(1))2,(x(2))2)T
则原空间的椭圆:
w 1 ( x ( 1 ) ) 2 + w 2 ( x ( 2 ) ) 2 + b = 0 w_1(x^{(1)})^2 + w_2(x^{(2)})^2 + b = 0 w1(x(1))2+w2(x(2))2+b=0
变为了新空间的直线:
w 1 z ( 1 ) + w 2 z ( 2 ) + b = 0 w_1 z^{(1)} + w_2 z^{(2)} + b = 0 w1z(1)+w2z(2)+b=0
于是,只要把所有的样本都映射到新的空间中,就可以用线性可分SVM完成分类了。我们称这样的变换思想为核技巧。

核技巧的基本想法是:通过一个非线性变换将输入空间对应于一个特征空间,使得输入空间 R n R^n Rn中的超曲面对应于特征空间 H \mathcal{H} H的超平面。这样,分类问题的学习任务通过在特征空间中求解线性SVM就可以完成。

核函数

假设映射 ϕ ( x ) : X → H \phi(x): \mathcal{X} \to \mathcal{H} ϕ(x):XH是一个从低维的输入空间 χ \chi χ(欧式空间的子集或者离散集合)到高维的希尔伯特空间的 H \mathcal{H} H映射。那么如果存在函数 K ( x , z ) K(x,z) K(x,z),对于任意 x , z ∈ χ x, z \in \chi x,zχ,都有:
K ( x , z ) = ϕ ( x ) ⋅ ϕ ( z ) K(x, z) = \phi(x) \cdot \phi(z) K(x,z)=ϕ(x)ϕ(z)
则称 K ( x , z ) K(x, z) K(x,z)为核函数。其中 ϕ ( x ) ⋅ ϕ ( z ) \phi(x) \cdot \phi(z) ϕ(x)ϕ(z)表示x与z的内积,结果是一个常数。

为什么要引入核函数呢?

通常映射 ϕ \phi ϕ需要将低维的输入空间映射到更高维度的空间才可以线性可分(例如对异或进行分类),那么分别计算 ϕ ( x ) , ϕ ( z ) \phi(x),\phi(z) ϕ(x)ϕ(z)的话,运算量比较大。如果存在K(x, z)可以等效的计算 ϕ ( x ) ⋅ ϕ ( z ) \phi(x) \cdot \phi(z) ϕ(x)ϕ(z),则可以极大的减少运算量。

举个例子:

假设输入空间是 R 2 \R^2 R2,有 x = ( x ( 1 ) , x ( 2 ) ) , z = ( z ( 1 ) , z ( 2 ) ) , K ( x , z ) = ( x ⋅ z ) 2 x = (x^{(1)}, x^{(2)}),z = (z^{(1)}, z^{(2)}),K(x,z)=(x\cdot z)^2 x=(x(1),x(2))z=(z(1),z(2))K(<

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值