二元、三元一次方程组的求解
消元法
如线性方程组:
a11x1+a12x2=b1(1)
(1)
a
11
x
1
+
a
12
x
2
=
b
1
a21x1+a22x2=b2(2)
(2)
a
21
x
1
+
a
22
x
2
=
b
2
(1)×a22:a11a22x1+a12a22x2=b1a22
(
1
)
×
a
22
:
a
11
a
22
x
1
+
a
12
a
22
x
2
=
b
1
a
22
(2)×a12:a21a12x1+a12a22x2=b2a12
(
2
)
×
a
12
:
a
21
a
12
x
1
+
a
12
a
22
x
2
=
b
2
a
12
两式相减得:
(a11a22−a12a21)x1=b1a22−b2a12
(
a
11
a
22
−
a
12
a
21
)
x
1
=
b
1
a
22
−
b
2
a
12
(a11a22−a12a21)x2=b2a11−b1a21
(
a
11
a
22
−
a
12
a
21
)
x
2
=
b
2
a
11
−
b
1
a
21
当
a11a22−a12a21≠0
a
11
a
22
−
a
12
a
21
≠
0
时,得:
x1=b1a22−a12b2a11a22−a12a21
x
1
=
b
1
a
22
−
a
12
b
2
a
11
a
22
−
a
12
a
21
x2=b2a11−a21b1a11a22−a12a21
x
2
=
b
2
a
11
−
a
21
b
1
a
11
a
22
−
a
12
a
21
可知,两式分母相同,且方程组的四个系数决定
行列式求解未知数
1425=1×5−2×4
1
2
4
5
=
1
×
5
−
2
×
4
方程组为:
x1−2x2+x3=−2(1)
(1)
x
1
−
2
x
2
+
x
3
=
−
2
2x1+x2−3x3=1(2)
(2)
2
x
1
+
x
2
−
3
x
3
=
1
−x1+x2−x3=0(3)
(3)
−
x
1
+
x
2
−
x
3
=
0
可解为:
D=12−1−2111−3−1=1×1×(−1)+(−2)×(−3)×(−1)+2×1×1−1×1×(−1)−(−2)×2×(−1)−1×(−3)×1=−5≠0
D
=
1
−
2
1
2
1
−
3
−
1
1
−
1
=
1
×
1
×
(
−
1
)
+
(
−
2
)
×
(
−
3
)
×
(
−
1
)
+
2
×
1
×
1
−
1
×
1
×
(
−
1
)
−
(
−
2
)
×
2
×
(
−
1
)
−
1
×
(
−
3
)
×
1
=
−
5
≠
0
D1=−210−2111−3−1=(−2)×1×(−1)+1×1×1−(−2)×1×(−3)−(−2)×1×(−1)=−5≠0
D
1
=
−
2
−
2
1
1
1
−
3
0
1
−
1
=
(
−
2
)
×
1
×
(
−
1
)
+
1
×
1
×
1
−
(
−
2
)
×
1
×
(
−
3
)
−
(
−
2
)
×
1
×
(
−
1
)
=
−
5
≠
0
D2=12−1−2101−3−1=1×1×(−1)+(−2)×(−3)×(−1)−(−1)×1×1−(−2)×2×(−1)=−10≠0
D
2
=
1
−
2
1
2
1
−
3
−
1
0
−
1
=
1
×
1
×
(
−
1
)
+
(
−
2
)
×
(
−
3
)
×
(
−
1
)
−
(
−
1
)
×
1
×
1
−
(
−
2
)
×
2
×
(
−
1
)
=
−
10
≠
0
D3=12−1−211−210=(−2)×1×(−1)+(−2)×2×1−(−1)×1×(−2)−1×1×1=−5≠0
D
3
=
1
−
2
−
2
2
1
1
−
1
1
0
=
(
−
2
)
×
1
×
(
−
1
)
+
(
−
2
)
×
2
×
1
−
(
−
1
)
×
1
×
(
−
2
)
−
1
×
1
×
1
=
−
5
≠
0
所以方程式的解为:
x1=D1D=1,x2=D2D=2,x3=D3D=1
x
1
=
D
1
D
=
1
,
x
2
=
D
2
D
=
2
,
x
3
=
D
3
D
=
1
一般线性方程组的解法:GAUSS消元法
如方程组:
a11x1+a12x2+...+a1nxn=b1(1)
(1)
a
11
x
1
+
a
12
x
2
+
.
.
.
+
a
1
n
x
n
=
b
1
a21x1+a22x2+...+a2nxn=b2(2)
(2)
a
21
x
1
+
a
22
x
2
+
.
.
.
+
a
2
n
x
n
=
b
2
…
am1x1+am2x2+...+amnxn=bm(2)
(2)
a
m
1
x
1
+
a
m
2
x
2
+
.
.
.
+
a
m
n
x
n
=
b
m
其中:
m∈N;aij∈N,称为系数;bi∈N,称为常数项
m
∈
N
;
a
i
j
∈
N
,
称
为
系
数
;
b
i
∈
N
,
称
为
常
数
项
求解过程:
利用系数矩阵和增广系数矩阵求解:
高斯消元法的过程就是:对增广矩阵的对换、倍乘、倍加
线性方程式组解的判定
阶梯形矩阵
1.若矩阵有零行(即元素全为0的行),则零行矩阵的下方; 2.对于矩阵的非零行,从左起第一个非零元素称为此行的主元,矩阵下面行的主元所在列一定在上面行的主元所在列的右端(从上到下,主元左边0的个数依次增加)
简化的阶梯形矩阵
1.主元都是1; 2.每个主元所在列中,除主元其他的元素都是0.
任一矩阵都可以通过矩阵的初等行变换化为阶梯形矩阵,进而可再化为简化的阶梯形矩阵
判定
1.若阶梯形矩阵有一个主元在最后一列(即有一行只有常数项不为0),则方程组无解;
1.
若
阶
梯
形
矩
阵
有
一
个
主
元
在
最
后
一
列
(
即
有
一
行
只
有
常
数
项
不
为
0
)
,
则
方
程
组
无
解
;
2.若矩阵的主元都不在最后一列,设矩阵有r个非零行(r≤n),也即有r个主元:
2.
若
矩
阵
的
主
元
都
不
在
最
后
一
列
,
设
矩
阵
有
r
个
非
零
行
(
r
≤
n
)
,
也
即
有
r
个
主
元
:
1)若r=n,这时前n列每一列上都有一个主元,则方程式组有唯一解
1
)
若
r
=
n
,
这
时
前
n
列
每
一
列
上
都
有
一
个
主
元
,
则
方
程
式
组
有
唯
一
解
2)若r<n,则方程式组有无穷解
2
)
若
r
<
n
,
则
方
程
式
组
有
无
穷
解
结论:
齐次线性方程组
方程组的常数项全为0则是齐次线性方程组,否则是非齐次线性方程组。
推导可知:
1.主元一定不在增广矩阵的最后一列,齐次线性方程组一定有解;
1.
主
元
一
定
不
在
增
广
矩
阵
的
最
后
一
列
,
齐
次
线
性
方
程
组
一
定
有
解
;
2.xi=0(i=1,2,3,...,n)一定是一组解,成为零解
2.
x
i
=
0
(
i
=
1
,
2
,
3
,
.
.
.
,
n
)
一
定
是
一
组
解
,
成
为
零
解
3.若有非零解,则它一定有无穷多个解
3.
若
有
非
零
解
,
则
它
一
定
有
无
穷
多
个
解
定理:
若齐次线性方程组的方程个数m小于未知量的个数n,即m < n时,齐次线性方程一定有非零解
参考课程:
《线性代数(先修课)》——学堂在线(清华大学,杨晶老师)