线性方程组

二元、三元一次方程组的求解

消元法

如线性方程组:

a11x1+a12x2=b1(1) (1) a 11 x 1 + a 12 x 2 = b 1

a21x1+a22x2=b2(2) (2) a 21 x 1 + a 22 x 2 = b 2

(1)×a22a11a22x1+a12a22x2=b1a22 ( 1 ) × a 22 : a 11 a 22 x 1 + a 12 a 22 x 2 = b 1 a 22

(2)×a12a21a12x1+a12a22x2=b2a12 ( 2 ) × a 12 : a 21 a 12 x 1 + a 12 a 22 x 2 = b 2 a 12

两式相减得:
(a11a22a12a21)x1=b1a22b2a12 ( a 11 a 22 − a 12 a 21 ) x 1 = b 1 a 22 − b 2 a 12

(a11a22a12a21)x2=b2a11b1a21 ( a 11 a 22 − a 12 a 21 ) x 2 = b 2 a 11 − b 1 a 21

a11a22a12a210 a 11 a 22 − a 12 a 21 ≠ 0
时,得:
x1=b1a22a12b2a11a22a12a21 x 1 = b 1 a 22 − a 12 b 2 a 11 a 22 − a 12 a 21

x2=b2a11a21b1a11a22a12a21 x 2 = b 2 a 11 − a 21 b 1 a 11 a 22 − a 12 a 21

可知,两式分母相同,且方程组的四个系数决定

行列式求解未知数

1425=1×52×4 1 2 4 5 = 1 × 5 − 2 × 4

方程组为:
x12x2+x3=2(1) (1) x 1 − 2 x 2 + x 3 = − 2

2x1+x23x3=1(2) (2) 2 x 1 + x 2 − 3 x 3 = 1

x1+x2x3=0(3) (3) − x 1 + x 2 − x 3 = 0

可解为:
D=121211131=1×1×(1)+(2)×(3)×(1)+2×1×11×1×(1)(2)×2×(1)1×(3)×1=50 D = 1 − 2 1 2 1 − 3 − 1 1 − 1 = 1 × 1 × ( − 1 ) + ( − 2 ) × ( − 3 ) × ( − 1 ) + 2 × 1 × 1 − 1 × 1 × ( − 1 ) − ( − 2 ) × 2 × ( − 1 ) − 1 × ( − 3 ) × 1 = − 5 ≠ 0

D1=210211131=(2)×1×(1)+1×1×1(2)×1×(3)(2)×1×(1)=50 D 1 = − 2 − 2 1 1 1 − 3 0 1 − 1 = ( − 2 ) × 1 × ( − 1 ) + 1 × 1 × 1 − ( − 2 ) × 1 × ( − 3 ) − ( − 2 ) × 1 × ( − 1 ) = − 5 ≠ 0

D2=121210131=1×1×(1)+(2)×(3)×(1)(1)×1×1(2)×2×(1)=100 D 2 = 1 − 2 1 2 1 − 3 − 1 0 − 1 = 1 × 1 × ( − 1 ) + ( − 2 ) × ( − 3 ) × ( − 1 ) − ( − 1 ) × 1 × 1 − ( − 2 ) × 2 × ( − 1 ) = − 10 ≠ 0

D3=121211210=(2)×1×(1)+(2)×2×1(1)×1×(2)1×1×1=50 D 3 = 1 − 2 − 2 2 1 1 − 1 1 0 = ( − 2 ) × 1 × ( − 1 ) + ( − 2 ) × 2 × 1 − ( − 1 ) × 1 × ( − 2 ) − 1 × 1 × 1 = − 5 ≠ 0

所以方程式的解为:
x1=D1D=1,x2=D2D=2,x3=D3D=1 x 1 = D 1 D = 1 , x 2 = D 2 D = 2 , x 3 = D 3 D = 1

一般线性方程组的解法:GAUSS消元法

如方程组:

a11x1+a12x2+...+a1nxn=b1(1) (1) a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1

a21x1+a22x2+...+a2nxn=b2(2) (2) a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2


am1x1+am2x2+...+amnxn=bm(2) (2) a m 1 x 1 + a m 2 x 2 + . . . + a m n x n = b m

其中:
mNaijNbiN m ∈ N ; a i j ∈ N , 称 为 系 数 ; b i ∈ N , 称 为 常 数 项

求解过程:
利用系数矩阵和增广系数矩阵求解:
这里写图片描述
高斯消元法的过程就是:对增广矩阵的对换、倍乘、倍加

线性方程式组解的判定

阶梯形矩阵

1.若矩阵有零行(即元素全为0的行),则零行矩阵的下方;
2.对于矩阵的非零行,从左起第一个非零元素称为此行的主元,矩阵下面行的主元所在列一定在上面行的主元所在列的右端(从上到下,主元左边0的个数依次增加)

这里写图片描述

简化的阶梯形矩阵

1.主元都是1;
2.每个主元所在列中,除主元其他的元素都是0.

任一矩阵都可以通过矩阵的初等行变换化为阶梯形矩阵,进而可再化为简化的阶梯形矩阵

判定

1.0 1. 若 阶 梯 形 矩 阵 有 一 个 主 元 在 最 后 一 列 ( 即 有 一 行 只 有 常 数 项 不 为 0 ) , 则 方 程 组 无 解 ;

2.r(rn)r 2. 若 矩 阵 的 主 元 都 不 在 最 后 一 列 , 设 矩 阵 有 r 个 非 零 行 ( r ≤ n ) , 也 即 有 r 个 主 元 :

1r=nn 1 ) 若 r = n , 这 时 前 n 列 每 一 列 上 都 有 一 个 主 元 , 则 方 程 式 组 有 唯 一 解

2r<n 2 ) 若 r < n , 则 方 程 式 组 有 无 穷 解

结论:
这里写图片描述

齐次线性方程组

方程组的常数项全为0则是齐次线性方程组,否则是非齐次线性方程组。

推导可知:

1.广线 1. 主 元 一 定 不 在 增 广 矩 阵 的 最 后 一 列 , 齐 次 线 性 方 程 组 一 定 有 解 ;

2.xi=0(i=1,2,3,...,n) 2. x i = 0 ( i = 1 , 2 , 3 , . . . , n ) 一 定 是 一 组 解 , 成 为 零 解

3. 3. 若 有 非 零 解 , 则 它 一 定 有 无 穷 多 个 解

定理:

 
若齐次线性方程组的方程个数m小于未知量的个数n,即m < n时,齐次线性方程一定有非零解


参考课程:
《线性代数(先修课)》——学堂在线(清华大学,杨晶老师)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vi_NSN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值