机器学习基础篇-学习率衰减

学习率衰减的方法

如果在模型训练期间学习率是固定的,则loss可能会如下图所示波动。所以如何找到使学习率自适应的方法显得至关重要。
在这里插入图片描述
在实际训练中,根据epoch的次数降低学习率是一种比较直接的方法,下面是衰减的公式:
α = 1 1 + D e c a y R a t e ∗ E p o c h N u m b e r ∗ α 0 \alpha= \frac{1}{1+DecayRate*EpochNumber}*\alpha_0 α=1+DecayRateEpochNumber1α0

根据以上公式,下面举个例子,假设初始学习率α_0,衰减率为1,那么学习率随着epoch的增加效果如下:

Epochα
10.1
20.067
30.05
40.04

当然,我们这里还有一些别的衰减方法
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Wiggles

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值