# 类名
CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
# 数据配置
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/kitti_dataset.yaml # 基本配置
POINT_CLOUD_RANGE: [0, -39.68, -3, 69.12, 39.68, 1] #点云范围 [x_min, y_min, z_min, x_max, y_max, z_max]
# 数据处理器
DATA_PROCESSOR:
- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES: True #移出boxes
- NAME: shuffle_points
SHUFFLE_ENABLED: { # 打乱数据集
'train': True,
'test': False
}
- NAME: transform_points_to_voxels
VOXEL_SIZE: [0.16, 0.16, 4] #体素大小
MAX_POINTS_PER_VOXEL: 32 #每个体素的最大点数
MAX_NUMBER_OF_VOXELS: { #最大体素数
'train': 16000,
'test': 40000
}
# 数据增强器
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder'] # 停用数据增强器
# AUG配置列表
AUG_CONFIG_LIST:
- NAME: gt_sampling
USE_ROAD_PLANE: True # 使用road plane
# 数据库信息路径
DB_INFO_PATH:
- kitti_dbinfos_train.pkl
# 准备
PREPARE: {
filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Cyclist:5'], #按最低分过滤
filter_by_difficulty: [-1], #按难度过滤
}
SAMPLE_GROUPS: ['Car:15','Pedestrian:15', 'Cyclist:15'] #样本组
NUM_POINT_FEATURES: 4 #点特征数
DATABASE_WITH_FAKELIDAR: False
REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0] # 删除多余的宽度
LIMIT_WHOLE_SCENE: False #整个场景限制
- NAME: random_world_flip #随机世界翻转
ALONG_AXIS_LIST: ['x'] #沿轴
- NAME: random_world_rotation #随机世界旋转
WORLD_ROT_ANGLE: [-0.78539816, 0.78539816] #世界旋转角度
- NAME: random_world_scaling #随机世界缩放
WORLD_SCALE_RANGE: [0.95, 1.05] # 世界范围
# 模型
MODEL:
NAME: PointPillar
VFE:
NAME: PillarVFE # pcdet/models/backbones_3d/vfe/pillar_vfe.py
WITH_DISTANCE: False
USE_ABSLOTE_XYZ: True
USE_NORM: True
NUM_FILTERS: [64] #滤波器个数
# 映射到BEV
MAP_TO_BEV:
NAME: PointPillarScatter # pcdet/models/backbones_2d/map_to_bev/pointpillar_scatter.py
NUM_BEV_FEATURES: 64 #BEV特征数
# 2D骨干
BACKBONE_2D:
NAME: BaseBEVBackbone # pcdet/models/backbones_2d/base_bev_backbone.py
LAYER_NUMS: [3, 5, 5] #层数
LAYER_STRIDES: [2, 2, 2] #层步幅
NUM_FILTERS: [64, 128, 256] #滤波器个数
UPSAMPLE_STRIDES: [1, 2, 4] #上采样步幅
NUM_UPSAMPLE_FILTERS: [128, 128, 128] #上采样滤波器个数
# 密集卷积头
DENSE_HEAD:
NAME: AnchorHeadSingle # pcdet/models/dense_heads/anchor_head_single.py
CLASS_AGNOSTIC: False
USE_DIRECTION_CLASSIFIER: True #使用方向分类器
DIR_OFFSET: 0.78539 #方向偏移量 = π / 4
DIR_LIMIT_OFFSET: 0.0 #方向限制偏移量
NUM_DIR_BINS: 2 #BINS的方向数
#anchor配置
ANCHOR_GENERATOR_CONFIG: [
{
'class_name': 'Car',
'anchor_sizes': [[3.9, 1.6, 1.56]], #尺寸
'anchor_rotations': [0, 1.57], #旋转角度:0°和90°=(弧度π/2=1.57)
'anchor_bottom_heights': [-1.78], #底高度
'align_center': False, #居中对齐
'feature_map_stride': 2, #特征图步幅
'matched_threshold': 0.6, #匹配阈值
'unmatched_threshold': 0.45 #不匹配阈值
},
{
'class_name': 'Pedestrian',
'anchor_sizes': [[0.8, 0.6, 1.73]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-0.6],
'align_center': False,
'feature_map_stride': 2,
'matched_threshold': 0.5,
'unmatched_threshold': 0.35
},
{
'class_name': 'Cyclist',
'anchor_sizes': [[1.76, 0.6, 1.73]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-0.6],
'align_center': False,
'feature_map_stride': 2,
'matched_threshold': 0.5,
'unmatched_threshold': 0.35
}
]
# 目标分配器配置
TARGET_ASSIGNER_CONFIG:
#轴对准目标分配器
NAME: AxisAlignedTargetAssigner # pcdet/models/dense_heads/target_assigner/axis_aligned_target_assigner.py
POS_FRACTION: -1.0 #POS分数
SAMPLE_SIZE: 512 #样本大小
NORM_BY_NUM_EXAMPLES: False
MATCH_HEIGHT: False #匹配高
BOX_CODER: ResidualCoder #BOX编码器
# 损失配置
LOSS_CONFIG:
LOSS_WEIGHTS: { #损失权重
'cls_weight': 1.0, # 分类权重
'loc_weight': 2.0, # 位置权重
'dir_weight': 0.2, # 方向权重
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] #代码权重
}
# 后期处理
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7] #recall阈值列表
SCORE_THRESH: 0.1 #分数阈值
OUTPUT_RAW_SCORE: False #输出原始分数
EVAL_METRIC: kitti #评估指标
# NMS配置
NMS_CONFIG:
MULTI_CLASSES_NMS: False # 多类NMS
NMS_TYPE: nms_gpu #NMS类型
NMS_THRESH: 0.01 #NMS阈值
NMS_PRE_MAXSIZE: 4096 #NMS上限
NMS_POST_MAXSIZE: 500 # NMS POST上限
# 优化
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 4 #每个GPU的批量大小
NUM_EPOCHS: 80 #epoch数
OPTIMIZER: adam_onecycle #优化器
LR: 0.003 #学习率
WEIGHT_DECAY: 0.01 #衰减量
MOMENTUM: 0.9 #动量
MOMS: [0.95, 0.85]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1 #学习率衰减
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 10
pointpillar.yaml
最新推荐文章于 2023-10-31 19:59:22 发布