kitti 数据预处理

根据tools/cfgs/dataset_configs/kitti_dataset.yaml锁定相应模块

(一)数据增强

info:output/kitti_models/pv_rcnn/default/log_train.txt第42行

用到了以下几个数据增强器

DATA_CONFIG:
    DATA_AUGMENTOR:
        AUG_CONFIG_LIST:
            - NAME: gt_sampling

gt_sampling及以下的各个函数均定位在pcdet/datasets/augmentor/database_sampler.py

- NAME: gt_sampling
	USE_ROAD_PLANE: False
	DB_INFO_PATH:
		- kitti_dbinfos_train.pkl
	
	#根据难度和关键点数量过滤掉一部分数据
	#具体函数在头文件中的augmentor_utils.py
	PREPARE: {
		filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Cyclist:5'],
		filter_by_difficulty: [-1],
	}
	
	SAMPLE_GROUPS: ['Car:15','Pedestrian:10', 'Cyclist:10']
	NUM_POINT_FEATURES: 4
	DATABASE_WITH_FAKELIDAR: False
	REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
	LIMIT_WHOLE_SCENE: False

	#通过随机翻转、旋转、放缩改变一部分dataset中gt_boxes和points的值,以增强数据
	#详细代码在头文件中的database_sampler.py
	- NAME: random_world_flip 
	ALONG_AXIS_LIST: ['x']

	- NAME: random_world_rotation
	WORLD_ROT_ANGLE: [-0.78539816, 0.78539816]

	- NAME: random_world_scaling
	WORLD_SCALE_RANGE: [0.95, 1.05]

随机翻转、旋转、放缩数据增强方式的详解:SA-SSD中的数据增强机制

(二)点云数据读取

info:output/kitti_models/pv_rcnn/default/log_train.txt第44行

POINT_FEATURE_ENCODING定位在pcdet/dataset/processor/point_feature_encoder.py

# 作用是将点云数据按照['x', 'y', 'z', 'intensity']的格式解码读取
POINT_FEATURE_ENCODING: {
    encoding_type: absolute_coordinates_encoding,
    used_feature_list: ['x', 'y', 'z', 'intensity'],
    src_feature_list: ['x', 'y', 'z', 'intensity'],
}

(三)数据生成

info:output/kitti_models/pv_rcnn/default/log_train.txt第48行

DATA_PROCESSOR及相关函数定位在pcdet/datasets/processor/data_processor.py

DATA_PROCESSOR:

	# 作用是遮盖所有在点云范围之外的点和gt_box
	# 具体函数在头文件中的common_utils.py和box_utils.py
    - NAME: mask_points_and_boxes_outside_range
      REMOVE_OUTSIDE_BOXES: True
	
	# 作用是将点云数据点随机排序(洗牌)
    - NAME: shuffle_points
      SHUFFLE_ENABLED: {
        'train': True,
        'test': False
      }

    # 根据spconv中的函数从点云中生成体素
    - NAME: transform_points_to_voxels
      VOXEL_SIZE: [0.05, 0.05, 0.1]
      MAX_POINTS_PER_VOXEL: 5
      MAX_NUMBER_OF_VOXELS: {
        'train': 16000,
        'test': 40000
      }

转:
https://blog.csdn.net/weixin_44579633/article/details/107944050

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值