深度学习加速之剪枝、知识蒸馏

本文详细介绍了深度学习中的模型剪枝和知识蒸馏技术。剪枝分为structured和unstructured pruning,以及local和global pruning,通过减少MACS来加速推理。网络瘦身方法通过BN层scale系数实现结构化剪枝。知识蒸馏则利用大型teacher net指导小型student net学习,保留重要信息,提高模型效率。实验表明,知识蒸馏能有效提升模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.剪枝

1.1 剪枝分类

此内容来自https://www.cs.princeton.edu/courses/archive/spring21/cos598D/lectures/pruning.pdf

1.1.1 structured pruning和unstructured pruning

在这里插入图片描述
Smart Pruning: Improve Machine Learning Performance on Mobile指出,非结构化剪枝的目的是将比较大的模型部署在移动端,而其推理时间没有什么变化(operation仍然和剪枝前一致)。

This h

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

外卖猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值