构建RAG+nebula graph(知识图谱KG)

 目标:通过利用 LlamaIndex 和 NebulaGraph 为费城费城人队(Philadelphia Phillies)构建一个RAG流程,深入探讨知识图谱。

NebulaGraph 是市场上最好的知识图谱数据库之一。它是开源的、分布式的,并且能够处理具有亿万边和顶点的大规模图,延迟在毫秒级别。大型公司广泛将其用于各种应用,包括社交媒体、推荐系统、欺诈检测等。

 Neo4j 进行复杂查询,使用 NebulaGraph 进行高吞吐量数据处理。

把一万份PDF转知识图谱——大模型做

知识图谱提升RAG性能——接llama-index

管理服务 - NebulaGraph Database 手册

nebulagraph: 3.8(知识图谱本体)

Release NebulaGraph Database

参考:NebulaGraph安装教程_nebula graph 安装-CSDN博客

 获取下载链接并安装系统,Download NebulaGraph Database下载 tar.gz 文件安装 NebulaGraph

NebulaGraph安装教程_nebula graph 安装-CSDN博客 

dpkg -i nebula-graph-3.8.0.ubuntu2004.amd64.deb

rpm -ivh --prefix=/opt/app/nebula-graph nebula-graph-2021.11.24-nightly.el7.x86_64.rpm

sudo /usr/local/nebula/scripts/nebula.service start all

下载界面:https://github.com/vesoft-inc/nebula-console/releases/tag/v3.8.0
下载:nebula-console-linux-amd64-v3.8.0
chmod +x nebula-console-linux-amd64-v3.8.0

./nebula-console-linux-amd64-v3.8.0 -addr 127.0.0.1 -port 9669 -u root -p 密码(自己设置123456)

至此!系统,已完成部署! 

第三部分:安装管理界面 

dpkg -i --prefix=/opt/app/nebula-graph-studio nebula-graph-studio-3.8.0.x86_64.deb

2.防火墙开通端口访问(暂可不设置)
firewall-cmd --zone=public --add-port=7001/tcp --permanent
firewall-cmd --zone=public --add-port=9669/tcp --permanent
firewall-cmd --zone=public --add-port=9779/tcp --permanent
firewall-cmd --reload
通过studio登录
http://****:7001/login

后续参考:

http://t.csdnimg.cn/mRWyH

### NebulaGraph RAG介绍 NebulaGraph实现了基于知识图谱的检索增强生成(RAG),这有助于利用领域特定的知识来提高模型输出的质量和准确性[^1]。具体来说,当涉及到复杂查询或是需要高度专业知识的任务时,通过集成知识图谱中的结构化信息,能够有效减少AI系统的幻觉现象。 #### 基于知识图谱RAG工作原理 在实现上,NebulaGraph发布了业界首个此类解决方案——即基于知识图谱RAG功能。这一特性允许用户不仅限于传统的文本匹配方式来进行数据检索,而是可以通过关联实体之间的关系网络获取更精准的结果集[^2]。 对于开发者而言,这意味着可以在应用程序中轻松嵌入强大的语义理解和推理能力;而对于最终使用者,则可以获得更加贴合实际需求的信息推荐服务。 #### 使用案例分析 为了更好地理解如何应用这些技术,在官方文档中有两个具体的演示可供参考: - **Graph RAG vs Vector RAG**: 展示了两种不同类型的向量索引方法之间性能差异的同时,也突出了前者在处理具有明确模式的数据上的优势; - **Text2Cypher Visual Comparison**: 提供了一个直观的方式让用户看到自然语言查询是如何被转换成针对图数据库的有效命令序列,并执行相应操作的过程。 ```python from nebula3.gclient.net import ConnectionPool from nebula3.common.ttypes import Vertex, Edge # 连接到NebulaGraph实例并创建会话 connection_pool = ConnectionPool() session = connection_pool.get_session('root', 'password') # 执行Cypher风格的查询语句以展示RAG效果 result_set = session.execute( "MATCH (n)-[r]->(m) WHERE n.name='example' RETURN r LIMIT 10" ) for row in result_set.rows(): edge = row.columns()[0].get_edge() print(f"{edge.src_vertex_id} -> {edge.dst_vertex_id}") ``` 此代码片段展示了连接到NebulaGraph服务器并通过Cypher样式的查询语法进行简单的关系查找过程。虽然这段代码本身并不直接涉及RAG机制的具体细节,但它体现了构建在此基础上的应用程序可能采取的操作形式之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MC数据局

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值