简单聊聊NOA技术

前言:

我们做技术的,不能两耳不问窗外事,一心只读圣贤书,这与闭门造车无异。

看了一篇报道,说BYD目前正在布局智驾平价,基本思路和这几年,BYD在电车平价化的打法和思路一致,就是逐步将电车价格,做到“油电同价”,再做到“电比油低”。

1、目前智驾发展的阶段

从评价标准来看,现在国产化智驾方案,我个人看来,已经无限接近L3,因为法规法律的约束,现在离L3级别的智驾,只差临门一脚。而这些技术,现在统称为NOA技术,NOA全称为Navigate on Autopilot 。

先回头看一看,智驾等级的划分,如下:

  1. Level 0:无自动化。车辆完全由人类驾驶,没有任何自动化辅助系统。

  2. Level 1:辅助驾驶。车辆具备一些基本的辅助驾驶功能,如自动制动、自适应巡航控制等,但仍需要人类驾驶员全程参与驾驶。

  3. Level 2:部分自动驾驶。车辆具备更多的自动驾驶辅助系统,如自动转向、车道保持等,但仍需要人类驾驶员在特定情况下接管驾驶。

  4. Level 3:有条件自动驾驶。车辆具备更高级别的自动驾驶功能,可以在特定道路环境下完成完整的驾驶任务但仍需要人类驾驶员在通知后接管驾驶。

  5. Level 4:高度自动驾驶。车辆可以在大部分道路环境下实现自动驾驶,包括城市道路和高速公路等,但仍需要人类驾驶员在一些特殊情况下接管驾驶。

2、新的技术NOA

NOA技术从应用场景上,又可以区分为:

1、高速NOA(指高速,城市高架,快速环路等场景下的智能驾驶)

2、通勤NOA(城市NOA的过度技术,只适合固定线路,上下班通勤等)

3、城市NOA  (城市全场景,端到端的智能驾驶)

以上3个选项智能化程度,依次上升。驾驶场景复杂度,交通参与单位的密集度我们依次解析。首先来看复杂度:我们先看最简单的高速NOA

复杂度

1、高速,城市高架,快速环路,首先这些路段道路条件一般都比较好,即道路平整,设计规范(不存在急转弯,大角度爬坡,下坡。不存在道路坑坑洼洼)。

2、其次,以上这些道路,道路标线都是很清晰,设计也比较合理,交通指示标牌(如限速标识牌,违规提示标识牌)都比较完善。

交通参与单位的密集度

3、以上这些道路,交通参与者是“以机动车为主”,不存在行人和非机动车道,

4、高速,高架,城市快速路,基本不存在路口多,也不会存在小动物闯入的情况。

城市NOA  (城市全场景,端到端的智能驾驶)

复杂度

1、全场景,意味着会出现小路,窄路,路口多,路况差,交通标识缺少,模糊等现象。

2、最重要的是,全场景意味着,各种非机动车,行人,会出现在交通场景中,各种突发情况出现的概率大大的增加,如非机动车逆行,行人闯红灯,横穿马路等行为。

以上的两点例子说明城市NOA需要处理的情况,比起单纯的高速NOA复杂很多

回到智驾本身,智驾本身可以想象成一个驾驶素质过硬的老司机。智驾本身的机制和人类驾驶一样,交通信息的采集(眼看耳听),汇总(大脑思考),预判(提前采取措施),行动(及时采取措施)。以及外部辅助信息的输入(类似于导航可以提供路况是否拥堵,语音提示测速违停信息等)以及司机自身经验。

3、智能驾驶的核心3大技术包括感知、决策、控制

3.1 感知

感知,目前也主要分为两大技术方案

**1)纯视觉系统,就是单纯依靠摄像头,来感知驾驶环境。特斯拉系列的FSD就是采取这种方案。

**2)视觉系统+雷达(激光雷达或毫米波雷达),来感知环境,国内百度阿波罗团队,蔚小理,以及大疆等智驾驶都是采取这种模式。

3.2决策

目前决策,也存在两种方案:

**1)本地决策,即依靠车身自带的智驾决策模块,通过内置算法来决策(L3及以下的智驾等级,基本都是采取这种算法),也是目前已经量产的智驾车型上比较成熟的方案。

**2)网端+本地,智能网联即将自动驾驶汽车联入到交通网络内,车辆与车辆、车辆与行人、车辆与道路等交通参与者之间可以将出行路径、规划及行驶状态等数据发送到云端,并分享给每一个交通参与者。智能网联的发展可以让自动驾驶汽车获得更多的交通信息,并可以提前对出行状态做出调整,从而确保出行的安全。智能网联更加偏向于整体智能

3.3 控制

即智能系统,对终端决策系统的控制,如刹车执行系统,电机控制系统的控制。通熟的理解,即为控制刹车和油门。

早期的智驾系统确实,只对这些系统作出控制,随着技术发展,包括智能座舱,底盘域的空气弹簧系统,都融入到智驾系统中。

4、智驾的两大目标(我自己总结的)

1、安全

2、快速

5、智驾的四个方向,(电动化、智能化、网联化、共享化)。

5.1 电动化

传统燃油车,尤其是在底盘域和动力域,是存在大量的机械结构和液压结构。

如常见的液压助力刹车系统,假设拥有智驾的车辆,依然采取传统液压刹车系统,至少存在以下几个问题。

1、需要在执行端,增加一个器件,模拟刹车的动作。此器件通过接收智驾模块的命令,决定采取何种动作。

2、响应时间长

3、无法准确快速的获取,刹车系统执行的情况,如刹车片有没有贴紧。

故现在很多车型,智驾车型上采取的都是“线控刹车技术”,传递刹车信号给制动执行单元,控制刹车系统。如下图,舍弃了复杂的液压传动机制

电动化的优势是,信息化程度高,响应快速,是现在的一个主要发展赛道

5.2、智能化

如果把10年前上市的车型中配备的车载大屏,看做是诺基亚,那么目前车载大屏就更类似于智能手机。

以前的车载大屏,黑白屏,只能简单的显示一些天气,速度,导航等信息,智驾车型更注重的是大屏与智驾系统的交互,大屏联网,系统更高级流畅,能刷视频,能打游戏

5.3  网联化

上面说了,智驾系统未来想要达到 L4/L5级别,只依靠本地智驾模块的算力是达不到这样的要求的,必须借助更强大的云端算力系统。这个就可以理解为网联化。

此外网联化,还是将大部分的交通参与者纳入到一个大系统中。也可以看做是共享化

### 基于NOA的无人机路径规划 #### NOA算法简介 NOA(Non-Overflying Area)是一种专门设计用于复杂地形环境中无人机路径规划的技术。它通过构建一种虚拟的安全区域模型,使得无人机能够避开障碍物并优化其飞行轨迹[^3]。 该方法的核心在于定义“不可飞越区”,即那些存在高风险或物理阻碍的区域。这些区域被标记出来后,算法会自动计算一条绕过它们的最佳路径。具体来说,NOA利用复杂的数学建模和地理信息系统数据来模拟真实世界的地形特征,并在此基础上应用特定的寻路策略完成任务。 #### 星雀算法的应用 星雀算法作为NOA的一个典型代表,在处理复杂山地危险模型方面表现出色。此算法不仅考虑到了传统意义上的距离最短原则,还加入了对环境因素如风速变化、温度梯度等因素的影响评估,从而提高了整个系统的鲁棒性和适应能力。 以下是实现上述功能的一段简化版MATLAB代码: ```matlab function path = noa_path_planning(startPoint, endPoint, obstacles) % 初始化参数 openList = []; closedList = []; % 将起点加入开放列表 currentPoint = startPoint; append(openList, currentPoint); while ~isempty(openList) % 找到F值最小的节点 [~, index] = min([openList.F]); currentNode = openList(index); % 如果当前节点为目标点,则结束循环 if isequal(currentNode.Position, endPoint) break; end % 移动至关闭列表并将邻居添加到开放列表中... move_to_closed_list(closedList, openList, currentNode); add_neighbors_to_open_list(openList, closedList, currentNode, obstacles); end % 构造最终路径 path = reconstruct_path(endPoint); end % 辅助函数省略... ``` 以上伪代码展示了如何使用NOA框架下的某种形式化逻辑去解决实际问题。需要注意的是,这只是一个非常基础的例子;真实的工程实践可能涉及更多的细节调整和技术考量。 #### 提升三维复杂环境下路径规划性能的方法 为了进一步改善无人机在诸如城市建筑群或者茂密树林这类高度动态化的场景里的表现效果,可以引入双向稀疏威胁探测机制(BSTDAStar)[^2]。这种方法通过对潜在碰撞点提前预警以及合理分配搜索方向权重等方式显著增强了原有单向探索模式下容易遇到瓶颈的情况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值