城市NOA能力测评体系

城区 NOA(Navigate on Autopilot)即城市导航辅助驾驶,是智能驾驶技术在城市道路环境中的应用,能够依据导航路线,在城市道路中实现自动变道、跟车、通过路口等功能,为用户提供更便捷的驾驶体验。

围绕城区 NOA 功能的用户使用场景,如何搭建了一套全面的测评体系是一个非常重要的探讨点。

一、设计运行条件(ODC)

ODC(operational design condition,设计运行条件)在国标GB/T 40429-2021中被定义为自动驾驶系统设计时确定的适用于其功能运行的各类条件的总称,包括设计运行范围、车辆状态、驾乘人员状态及其他必要条件。其中设计运行范围英文缩写也为ODD,被定义为自动驾驶系统内设计时确定的适用于其功能运行的外部环境条件。
ODC 指设计时确定的自动驾驶系统可以安全启动和运行的所有条件,如图所示,包括ODD、驾乘人员状态、车辆状态以及其他必要条件。
在这里插入图片描述

1. ODD作用

  • 企业依据ODC定义自动驾驶系统能够安全启动和运行的使用范围。通过对ODD包含的外部环境元素进行检测,来识别ODD是否在自动驾驶系统的能力范围之内;通过对车辆状态进行自检,来识别车辆状态是否能够支撑自动驾驶系统的正常运行;通过对动态驾驶任务后援用户(3级驾驶自动化系统中角色)的接管能力和驾乘人员(4和5级驾驶自动化系统中角色)的安全状态进行监测,来识别自动驾驶系统是否具有被及时接管的能力以及是否具有保证驾乘人员安全的运行条件。
  • 企业依据ODC制定用户说明手册,帮助用户理解自动驾驶系统的使用条件和运行范围。用户通过说明手册,可以清晰地了解自动驾驶系统在外部环境满足什么样的条件下可以正常运行;车辆在出现什么故障后会导致自动驾驶系统退出,驾乘人员不满足什么样的安全条件后会进行功能降级。
  • 测试机构依据ODC制定相应的自动驾驶系统的安全测试用例,并出具具有认可性的测试报告。而不像现在,各家厂商均是选择有利于自己功能的场景进行测试,以此来宣传自己系统无与伦比的优势。

2. 组成元素之设计运行范围(ODD)

自动驾驶系统需要能够实时获取ODD包含的元素信息,以使自动驾驶系统能够识别是否处于ODD范围。而ODD元素的获取即可以通过自身传感器实时获取,也可以通过高精地图、V2X等形式获取。所以,打工人每罗列一条ODD元素,都要思考我这个车可以通过什么方式可以获取这个元素的信息,这可能是制定ODD的难处所在。
为了尽快建立ODD的构建框架和一个最小元素集合,以便在日后自动驾驶标准制定中拥有更多的话语权,世界各地大小组织夜以继日,废寝忘食,目前除了出生地SAE外,也形成了其他几个有代表性的ODD构建框架。包括NHTSA ODD构建框架、Pegasus 6层模型、BSI ODD构建框架以及蓄势待发国标ODD(包含在ODC之中),下面以NHTSA构建框架介绍。

NHTSA(National Highway Traffic Safety Administration,美国高速公路安全管理局)在2019年发布的《A Framework for Automated Driving System Testable Cases and Scenarios》中对ODD的分类框架和应用方法进行了系统的介绍。

NHTSA对ODD的定义为:自动驾驶系统可以设计运行的操作范围,包括道路类型、速度范围、光照条件、天气条件和其他相关的运行约束。从定义可以看出和国标ODD定义基本一致,都是聚焦在外部环境。NHTSA通过结构化方法将ODD进一步分为六大构建要素。基础设施、驾驶操作限制、周边物体、连接性、环境条件和区域。ODD六大构建要素及其子元素如下图所示。
在这里插入图片描述
ODD 为自动驾驶系统运行的外部环境,ODD 应分为"静态实体"、"环境条件"和"动态实体"属性。
在这里插入图片描述
静态实体 —— 应由运行环境下状态不改变的实体组成,如:道路、交通灯等;
环境条件 —— 应包括天气、大气条件和信息环境;
动态实体 —— 应由运行时间内状态发生变化的实体组成,如交通情况、道路使用者等。
下表为是企业满足最低安全要求需要说明的ODD 最小元素集合,监管机构、用户和测试机构对ODD 元素的使用可从中抽取。同时,ODD 元素可扩展,即ODC最小元素集合允许利益相关者添加新层级进行横向扩展,或将更多元素信息添加到现有层级中进行纵向扩展。

2.1 静态实体

2.1.1 道路类型
  • 城市道路:快速路、主干路、次干路、支路

  • 城市道路等级划分 公路:高速公路、一级公路、二级公路、三级公路、四级公路 公路等级划分参考链接

  • 厂矿道路:厂外道路、厂内道路、露天矿山道路

  • 林区道路:集材道路、运材道路、营林道路

  • 停车场:室内停车场、室外停车场

  • 乡村道路

2.1.2 道路表面
  • 材质:沥青混凝土、水泥混凝土、铺石、其他如涂装材料、工业废渣、泥土
  • 道路损坏:开裂、车辙、沉陷、坑洼、表面松散
  • 道路路面:干燥、湿滑、结冰、积雪、积水、路面有油、泥泞、特殊覆盖(铁板、减速带等)
2.1.3 道路几何
  • 平面:直线、平曲线、超高、加宽
  • 纵断面:上坡、下坡、水平
  • 横断面:分离、不分离、人行道、道路边缘屏障
2.1.4 车道交叉
  • 平面交叉:信号控制交叉口、无信号控制交叉口、主路优先控制交叉口、环形交叉口
  • 立体交叉:枢纽立交、一般立交、分离式立交
2.1.5 车道特征
  • 车道标线:车道线清晰、车道线模糊、无车道线、临时车道线、可变车道线
  • 车道类型:交通管制车道、混合车道、专用车道、应急车道、人行横道、自行车道、公交车道
  • 车道数:>2 车道、单车道、2车道
  • 车道方向:靠左行驶、靠右行驶
  • 车道宽度
2.1.6 交通标志
  • 标志牌:固定标志、临时标志、状态变化的、状态不变的
  • 信号灯:固定信号灯、移动信号灯
2.1.7 道路边缘
  • 边界线:道路边界线清晰、无道路边界线、临时道路边界线
  • 路肩:硬路肩(铺装、碎石)、软路肩(草丛)
  • 屏障:格栅、栏杆、路缘石、锥桶等
2.1.8 道路设施
  • 特殊设施:桥、隧道、收费站、铁路交叉口
  • 临时设施:道路施工、交通事故
  • 固定设施:建筑、树木
2.1.9 区域
  • 地理围栏区域
  • 交通管制区域
  • 学校区域

2.2 环境条件

2.2.1 天气
  • 风速:[0-5]级:<10.7m/s、6级强风:10.8m/s-13.8m/s、7级劲风:13.9m/s-17.1m/s、8级大风:17.2m/s-20.7m/s
  • 能见度(雾/霾):优: ≥10km、良: [2, 10) km、一般:[1, 2) km、较差:[500, 1000) m、差: [50, 500) m、极差:<50m
  • 雨天:小雨:<2.5mm/h、中雨:2.5mm/h-7.6mm/h、大雨:7.6mm/h-50mm/h、暴雨:>50mm/h
  • 雪天:小雪水平能见度:≥1000m、中雪水平能见度:[500, 1000) m、大雪水平能见度:<500m
2.2.2 光照
  • 光照度:白天:>=2000 lux、照度差:[1000, 2000) lux、夜晚:<1000 lux
  • 光照方向:光源在前侧、光源不在前侧
  • 光照角度:地平线及地平线上、地平线下
  • 人工光源:路灯、对向车灯
2.2.3 连接性
  • 通信类型:V2V、V2I、V2P、V2N
  • 信号强度:信号强、信号干扰(时延)、无信号
  • 定位类型:GALILEO、GLONASS、GPS、BEIDOU
  • 路侧辅助定位设施
  • 高精地图

2.3 动态实体

2.3.1 交通情况
  • 交通条件: 需前方有车
2.3.2 道路使用者
  • 机动车:大型汽车、小型汽车、专用汽车、特种车、三轮车、二轮摩托车、挂车、其他机动车
  • 非机动车:畜力车、人力三轮车、自行车、电动自行车、手推车、残疾人专用车
  • 行人
2.3.3 非道路使用者
  • 其他:掉落的货物等、动态道路垃圾
  • 动物

3. 组成元素之车辆状态

车辆状态包含车辆速度和车辆软硬件状态。车辆速度主要指激活速度范围,通过激活速度范围判断驾驶自动驾驶系统是否能够被激活。硬件状态主要指关键传感器、计算单元、关键执行器状态是否满足激活和运行的要求。软件状态指定位、感知、控制、规划等模块的状态是否满足激活和运行的要求。不满足要么无法激活,激活后的不满足将启动功能降级。
在这里插入图片描述
正常运行的车辆状态是自动驾驶系统启动和运行的前提条件之一。车辆状态包括激活速度范围和功能状态。

  • 激活速度范围 —— 主要是自动驾驶系统能够开启的速度,通过识别车辆是否达到激活速度范围来判断车辆是否能够开启。
  • 功能状态 —— 为自动驾驶系统安全启动、运行前需要进行自检的功能模块达到的状态,包括系统的软硬件功能状态,要求该自动驾驶功能状态能够满足自动驾驶系统安全启动和运行的条件要求。

3.1 激活速度范围

通过激活速度范围判断驾驶自动驾驶系统是否能够被激活

3.2 功能状态

  • 感知功能
  • 定位功能
  • V2X功能
  • 高精地图功能
  • 决策规划功能
  • 控制功能:转向、制动、动力、热管理及监控、胎压监测等
  • 人机交互功能
  • 最小风险策略功能
  • 数据记录功能:DSSAD、EDR
  • 车身:传感器清洗功能、照明和信号灯功能、车门关闭、雨刮功能等
  • 车内通讯
  • 安全功能:被动安全系统、主动安全系统、信息安全状态安全、SOS 系统等

4. 组成元素之驾乘人员状态

3级驾驶自动化系统工作时,可以识别驾驶自动化系统发出的介入请求和明显的动态驾驶任务相关的车辆故障,并执行接管的用户称为动态驾驶任务后援用户。动态驾驶任务后援用户在风平浪静的时候可以安心欣赏前方的美景,但在驾驶自动化系统发出接管请求或发生影响驾驶自动化系统的车辆故障,需要及时进行接管。

而为了保证驾驶3级驾驶自动化系统可以及时被接管,就需要对动态驾驶任务后援用户进行实时监测,通过识别其疲劳、注意力、位姿、安全带、醉酒等状态来判断是否满足接管条件,不满足时要采取声、光、电三维暴力提醒,提醒依旧无效后,3级驾驶自动化系统还需启动功能降级直至安全停车。

对于4~5级驾驶自动化系统来说,车内人员统称为乘客,为了保证乘客乘坐的安全,势必还要监测其位姿、安全带、儿童约束系统、生命体征等状态是否满足一定的安全条件。
在这里插入图片描述
驾乘人员主要分为驾驶员/动态驾驶任务后援用户和乘客。自动驾驶系统安全启动和运行时要求动态驾驶任务后援用户的状态满足及时接管的条件,同时要求驾乘人员的状态达到一定的安全条件。

4.1 驾驶员/ 动态驾驶任务后援用户状态

  • 疲劳状态:非疲劳、一般疲劳、严重疲劳
  • 注意力分散状态: 无分散、瞬态分散、反复瞬态分散、长时间分散
  • 位姿状态: 驾驶姿态正常、驾驶姿态不正常、在驾驶位、不在驾驶位
  • 极端异常情况:生命指征异常(体温,心跳,脉搏)、酒驾、毒驾、路怒暴躁
  • 安全带状态:系上、未系上
  • 与系统匹配度:匹配、未匹配

4.2 乘客状态

  • 位姿状态: 无抢夺驾驶设备行为、有抢夺驾驶设备行为
  • 极端异常状态:生命指征异常(体温,心跳,脉搏)、愤怒暴躁行为、打架行为
  • 儿童约束系统状态:正确使用、未正确使用
  • 安全带状态: 系上、未系上
  • 与系统匹配度: 匹配、未匹配

二、场景维度

从场景维度方面,可以分为基础场景和特定场景两大类别。

● 基础场景包含单车道场景(如直道巡航、直道跟车、弯道行驶等)、变道场景(指令变道、超车变道、导航变道等)以及路口场景(红绿灯识别、跟车过路口、直行过路口等)

● 特定场景则有左转(包括无待转和有待转情况)、右转、调头、城区避障、Cut - in、车道中 VRU 横穿、绕行障碍物、路口 VRU 横穿,还涵盖人流密集场景、窄路场景、拥堵场景以及不同天气条件等。

三、具体场景

1. 基础场景

城市NOA系统的核心目标是实现无需人为接管的点到点自动驾驶,这要求车辆在复杂的城市环境中能够准确响应导航指令,安全完成各种驾驶操作。
为确保系统的可靠性和安全性,功能测试场景的设计必须全面覆盖实际驾驶工况,并通过明确的测试定义和性能指标进行验证。
**基础场景**

1.1 单车道场景:

**单车道&弯道场景**

依据道路形态和交通参与者状况,可细分为直道巡航、直道跟车、弯道巡航、弯道跟车 4 类。车辆在单车道内沿车道线行驶,这是最基本且普遍的场景:

  • 直道巡航:道路近乎无弯曲,车道通畅且前方无车,可直线行驶,车速通常在 40 - 80km/h。

  • 直道跟车:道路近乎无弯曲,车辆跟随前车行驶,保持特定车距,车速随前车变化。

  • 弯道巡航:道路有弯曲,车道通畅且前方无车,需依道路结构调整车速与方向。

  • 弯道跟车:道路有弯曲,车辆跟随前车行驶,车速和方向受前车及道路曲率影响。

  • 稳定跟车:测试车辆需在目标车以5~100 km/h定速行驶时,保持安全的车间距离。例如,自车与目标车后轴的横向偏移需≤0.6m,车间时距≥0.8 s。这一场景验证了系统在常规跟车状态下的稳定性。

  • 前车变速行驶:当目标车以3 m/s²减速至静止,并在3 s内以1.5 m/s²加速至60
    km/h时,自车需平滑调整速度和距离,跟停后纵向距离≥1 m,且加速度变化率均值≤5 m/s³。这一测试评估了系统对动态目标的响应能力。

  • 目标车切出:目标车以2060 km/h行驶并以0.51 m/s横向速度切出车道,自车需在10s内完成平稳调整。这一场景验证了系统在目标车辆突然离开时的适应性。

1.2 变道场景

因外部环境或导航路线等因素,自车需变换车道行驶。依触发变道原因,分为指令变道和自主变道,自主变道指系统发出变道指令,包含超车变道、地形变道、导航变道等:

  • 指令变道:变道指令源于驾驶员意图,是驾驶员通过转向拨杆主动控制的变道。驾驶员触发换道指令后,自车需平稳进入目标车道并恢复车道保持功能,左右各测试一次,确保操作的平滑性和安全性。
  • 超车变道:前车速度太慢或前方有大型车辆,长时间跟车影响通行效率或存在安全风险。
  • 地形变道:道路地形变化(如车道分流或合流)导致自车需变道。
  • 导航变道:常见于路口和道路分岔路段,因导航规划路线使自车需变道。
  • 并入主道:自车从匝道汇入高速主道时,需根据导航指令安全完成并道操作,避免与其他车辆冲突。
  • 进入匝道:自车通过高速汇出匝道时,需平稳切出主道,保持导航路径的连续性。

2. 特定场景

**路口场景**

路口场景是城区的典型场景,车速一般不超过 40km/h,车辆需严格遵循路口各类交通设施的引导与约束。

路口道路形态丰富,常见的有十字路口、T 形路口、错位路口、环形路口(环岛)、Y 形路口、X 形路口等。在此场景下,城市 NOA 功能需完成红绿灯识别、跟车过路口、直行、左转、右转、调头 等行驶任务。

2.1 不同形态的路口

  • Y 型路口:形状呈 Y 字的路口。
  • T 型路口:形状为 T 字的路口。
  • 十字路口:横竖两条道路交叉形成的路口。
  • X 型路口:两条道路斜向交叉呈 X 形的路口。
  • 错位路口:道路错位相交的路口。
  • 环形路口:以环岛为中心的环形路口。

2.2 路口的行驶任务

  • 直行:沿当前道路方向径直通过路口。自车以40~60 km/h通过至少双车道的复杂路口,要求平稳穿越,避免因道路错位导致失误。
  • 右转:向右转弯通过路口。自车从非右转车道起步,以30~60 km/h完成右转,验证导航指导下的转向能力。
  • 左转:向左转弯通过路口。自车以50 km/h左转,面对右侧50 km/h直行车辆的路径冲突时,需安全完成操作。
  • 调头:在路口处完成车辆掉头操作。
  • 环形路口通行:自车以40 km/h通过环岛并从指定出口驶出,测试其在环形路径中的导航和行驶能力。

2.3 避障场景

城区路况复杂,无序穿行的行人、非机动车等不确定因素多,常出现障碍物,需避免碰撞。

依据障碍物移动轨迹,避障场景分为前方纵向侵占车道场景和前方横穿场景。城区 NOA 功能应通过横、纵向联动控制策略避障,保障功能的安全性、流畅性与体验连续性。

2.3.1 前方纵向侵占车道

前方出现障碍物占据本车道,使自车无法按原轨迹通行。常见侵占物体有行人、非机动车、机动车、施工区域锥桶、围墙、栏杆等。

根据侵占车道程度,有不同应对方案:

  • 侵占程度 0(压线):轻微影响,可车道内绕行。
  • 侵占程度 50%(占据 50% 道路宽度):影响较大,可借道避障。
2.3.2 前方横穿

非机动车与行人无序突然穿行,或机动车 Cut - in。横穿场景可能发生在车道、路口、环岛等路段。横穿物体危险度高,应及时减速避让,必要时停车等待。

  • 前车切入:相邻车道车辆以1.0~1.1 m/s切入自车前方时,自车需平稳调节车速和车距,保持安全。
  • 前车变换:目标车在与前方低速车TTC(碰撞时间)为2.8 s时变道切出,自车需平稳调整至新的跟车状态。
  • 避让行人/自行车:自车在实线车道遇前方行人或自行车时,需减速跟随,确保安全距离和平稳性。

2.4 人流密集场景

**人流密集**

行人数量多且密集,移动轨迹难测,易突然出现,严重干扰车辆行驶,不确定性高。

主要包括公交站台、学校门口、园区门口等场景,是城区 NOA 的重点测评场景,极大考验系统的环境感知与决策规划能力。

  • 公交站台:易现行人横穿和“鬼探头”,公交车随时起步并左转变道。
  • 园区门口:办公园区、居民社区、商业区等出入口,行人及非机动车穿行普遍。
  • 学校门口:未成年人交通安全意识淡薄,移动轨迹多变,儿童身高低,识别难度大于成人。

2.5 交通拥堵场景

**交通拥堵**

因车流量大、人车混行、红绿灯时间长等致拥堵,车速受限,只能低速缓行。需保持低速跟车,留意行人、非机动车风险及红绿灯状态。

2.6 窄路场景

**窄路场景**

城区狭窄巷道、小路等,通常仅允许一车单向通行。路边有临时停放的两轮车、大石块等障碍物,还有非机动车和行人穿行,通行困难。城区 NOA 车辆需低速缓行,常转动方向盘调整车身姿态。

2.7 道路障碍物和掉头

  • 避让锥桶/水马:自车在双车道上以设定速度行驶,遇右侧障碍物侵入时,需变道绕行,横向距离内边缘1.5 m,纵向距离>100 m。
  • 交叉路口掉头:自车以50 km/h在导航指导下完成U型掉头,要求操作平稳。
  • 专用分叉口掉头:在专用掉头路口以50 km/h完成U型掉头,确保路径执行的准确性。
  • N型掉头: N型掉头是城市NOA系统中一项复杂功能,测试场景定义为在双向两车道的交叉路口进行掉头。 自车设定导航路径后,以50km/h巡航速度稳定行驶,完成掉头操作,要求平稳性作为性能指标。这一场景验证了系统在狭窄空间和多方向交互中的导航执行能力。

四、评价体系

智能驾驶系统评价体系可分为五大核心维度:

1. 安全性评估

  • 动态控制:响应及时性、安全车速范围
  • 跟车策略:动态跟车距离、跟停距离
  • 车道保持:车道居中精度、默认车道选择逻辑
  • 风险应对:多场景会车策略、三级避障策略体系(运动障碍物检测、运动障碍物碰撞轨迹预测和运动障碍物避障三个部分‌)

2. 舒适性评价

  • 操控平顺:方向盘转角速率、转向过冲量
  • 行驶质量:纵向加速度阈值、加加速度限制
  • 轨迹优化:车道跟踪平滑度、避障路径曲率连续性

3. 可靠性验证

  • 系统稳定性:误触发率、非必要接管率
  • 场景通过率:弯道通过率、路口转向成功率
  • 避险能力:静态障碍物避让成功率、动态障碍物避让成功率

4. 通行效率

  • 行程时效:路径规划偏差率、行程用时优化比
  • 跟车性能:时距自适应调节、自动启停响应
  • 车道策略:优先车道选择算法、车道变更成功率

5. 人机交互设计

  • 环境感知可视化:三维场景重建精度、动态要素更新频率
  • 状态显示系统:驾驶模式三级提示、系统置信度量化显示
  • 交互通道管理:多模态告警策略(视觉/听觉/触觉)、语音指令响应

五、关键场景评价体

从技术角度深入分析几个关键场景的测试设计及其意义:

  • 跟车行驶功能的动态响应能力:跟车行驶功能的测试不仅关注静态距离保持,还需验证系统对动态变化的适应性。
    例如,在“前车变速行驶”场景中,目标车减速至静止并重新加速的过程模拟了城市道路中常见的拥堵和起步工况。自车需在3s内完成跟停,并在加速度变化率≤5 m/s³的约束下实现平滑加速。这一指标直接反映了系统的控制精度和乘客舒适度。
    此外,“目标车切出”场景中10 s的调整时间窗和≥0.8 s的车间时距要求,确保了系统在突变工况下的安全冗余。
  • 变道与并/换道行驶的路径规划能力:变道操作依赖于传感器感知、路径规划和执行控制的协同工作。
    以“变道行驶”为例,自车需在驾驶员触发指令后,结合周围环境完成左右换道,性能指标为“平稳完成”。这一模糊指标在实际测试中可细化为横向加速度≤0.3g、换道时间≤5 s等量化标准。
    并入主道”和“进入匝道”则进一步考验系统对导航数据的实时响应能力,要求在复杂流量中安全切入或切出,体现了城市NOA系统的高级决策能力。
  • 交叉路口与环形路口通行的导航协同性:交叉路口和环形路口的测试场景集中体现了NOA系统中导航与自动驾驶功能的融合。
    例如,“交叉路口左转”要求自车在面对冲突路径的直行车辆时安全完成转向,这需要精确的交通信号识别、路径预测和避让策略。性能指标“安全完成”意味着零碰撞和符合交通规则的操作。
    同样,“环形路口通行”测试了系统在多出口环岛中的路径选择能力,40km/h的设定速度和“稳定行驶”要求进一步验证了其在连续曲率变化中的控制稳定性。
  • 前方车辆变换与弱势目标避让的安全性:城市道路中弱势交通参与者(如行人、自行车)的存在对NOA系统提出了更高要求。
    在“避让行人/自行车”场景中,自车需在实线车道内减速跟随,保持与目标的纵向距离>100m。这一设计避免了不必要的变道风险,体现了系统对交通规则的遵守和对安全的优先级。 而“前车切入”场景中,车间时距0.4~0.6s的短暂窗口测试了系统的紧急反应能力,确保在高密度交通中仍能保持稳定。
  • 障碍物避让与掉头的执行精度:“避让锥桶/水马”场景模拟了城市道路中的临时施工或障碍,要求自车在感知到横向侵入1.5m的物体后主动变道绕行。 这一功能的实现依赖于高精度的环境感知和路径规划,性能指标“平滑绕过”可通过横向加速度和速度波动量化。
  • “N型掉头”和“U型掉头”则测试了系统在狭窄空间内的低速操控能力,50 km/h的巡航速度和“平稳完成”要求确保了操作的舒适性与安全性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值