勒贝格外侧度为0的集合勒贝格可测.

  1. 这里,我们使用Carathéodory’s criterion来证明这个结论。

  2. 首相,令 m ∗ ( A ) = 0 m^{*}(A)=0 m(A)=0.

  3. 接下来我们就需要证明 A A A 是勒贝格可测的。

  4. 为了证明 A A A勒贝格可测, 我们需要证明下面的等式对所有的
    S ⊂ R n S\subset \mathbb{R}^n SRn 成立。

    m ∗ ( S ) = m ∗ ( S ∩ A ) + m ∗ ( S ∩ A c ) m^{*}(S)=m^{*}(S\cap A)+m^{*}(S\cap A^c) m(S)=m(SA)+m(SAc)

  5. 又因为

    S = ( S ∩ A ) ∪ ( A ∩ A C ) S=(S\cap A)\cup (A\cap A^C) S=(SA)(AAC)

    我们可以得到

    m ∗ ( S ) ⩽ m ∗ ( S ∩ A ) + m ∗ ( S ∩ A C ) m^{*}(S)\leqslant m^{*}(S\cap A)+m^{*}(S\cap A^C) m(S)m(SA)+m(SAC)

  6. 接下来只需要证明

    m ∗ ( S ∩ A ) + m ∗ ( S ∩ A C ) ⩽ m ∗ ( S ) m^{*}(S\cap A)+m^{*}(S\cap A^C)\leqslant m^{*}(S) m(SA)+m(SAC)m(S)

    即可

  7. 因为 S ∩ A ⊂ A S\cap A\subset A SAA, 所以

    m ∗ ( S ∩ A ) ⩽ m ∗ ( A ) = 0 m^{*}(S\cap A)\leqslant m^{*}(A)=0 m(SA)m(A)=0

  8. 因为 S ∩ A C ⊂ S S\cap A^C\subset S SACS, 所以

    m ∗ ( S ∩ A C ) ⩽ m ∗ ( S ) m^{*}(S\cap A^C)\leqslant m^{*}(S) m(SAC)m(S)

  9. 由7,8得6成立。故而结论得证.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值