如果一个集合的Lebesgue测度为0, 那么它的子集也是Lebesgue可测的并且其测度也为0.

Theorem

A subset of a zero(0) Lebesgue measure is Lebesgue measurable.

proof

We will use the Carathéodory’s criterion to prove this statement.

  1. Let m ( E ) = 0 m(E)=0 m(E)=0, where m m m is the Lebesgue measure.

  2. Let A A A be any set, and B ⊂ E B\subset E BE. Thus

    m ∗ ( A ) ⩽ m ∗ ( A ∩ B ) + m ∗ ( A ∩ B C ) m^{*}(A)\leqslant m^{*}(A\cap B)+m^{*}(A\cap B^C) m(A)m(AB)+m(ABC)

    where m ∗ m^{*} m is the Lebesgue outer measure (Lebesgue outer measure is countably subadditive.)

  3. Since the Lebesgue outer measure is monotone, we have

    0 ⩽ m ∗ ( A ∩ B ) ⩽ m ∗ ( B ) ⩽ m ∗ ( E ) = 0 0\leqslant m^{*}(A\cap B)\leqslant m^{*}(B)\leqslant m^{*}(E)=0 0m(AB)m(B)m(E)=0

    Hence, we have

    m ∗ ( A ) ⩽ m ∗ ( A ∩ B C ) m^{*}(A)\leqslant m^{*}(A\cap B^C) m(A)m(ABC)

  4. Since A ∩ B C ⊂ A A\cap B^C\subset A ABCA, we have

    m ∗ ( A ∩ B C ) ⩽ m ∗ ( A ) m^{*}(A\cap B^C)\leqslant m^{*}(A) m(ABC)m(A)

  5. By 3 and 4, we have

    m ∗ ( A ) = m ∗ ( A ∩ B ) + m ∗ ( A ∩ B C ) m^{*}(A)= m^{*}(A\cap B)+m^{*}(A\cap B^C) m(A)=m(AB)+m(ABC).

  6. By the Carathéodory’s criterion, we have proved that B B B is Lebesgue measurable.

  7. 0 ⩽ m ( B ) ⩽ m ( E ) = 0 → m ( B ) = 0 0\leqslant m(B)\leqslant m(E)=0\rightarrow m(B)=0 0m(B)m(E)=0m(B)=0

::END::

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值