零测集的定义
设 A ⊂ R 2 A\subset \mathbb{R}^2 A⊂R2 为平面点集. 如果任给 ε > 0 \varepsilon>0 ε>0,存在至多可数个闭矩形
I i , i = 1 , 2 , ⋯ I_i,i=1,2,\cdots Ii,i=1,2,⋯
使得
A ⊂ U i ⩾ 1 I i , 且 ∑ i ⩾ 1 v ( I i ) < ϵ A\subset U_{i\geqslant 1}I_i, \ \ 且\ \ \sum_{i\geqslant 1}v(I_i)<\epsilon A⊂Ui⩾1Ii, 且 i⩾1∑v(Ii)<ϵ
则称 A A A 为零测集
零测集的基本定理
- 有限点集均为零测集
- 零测集的子集均为零测集
- 可数个零测集之并仍为零测集
- 矩形的边是零测集
- 设 f f f 为 [ a , b ] [a,b] [a,b] 上的一元可积函数,则其图像 g r a p h ( f ) = { ( x , f ( x ) ) ∣ x ∈ [ a , b ] } ⊂ R 2 {\rm graph}(f)=\{(x,f(x))|x\in[a,b]\}\subset\mathbb{R}^2 graph(f)={(x,f(x))∣x∈[a,b]}⊂R2 为零测集