零测集的定义

零测集是指在平面中具有特定性质的点集,即使得其可以被极少量的闭矩形覆盖且总面积小于任意给定正数。博客介绍了零测集的基本特性,包括有限点集、零测集子集、可数个零测集的并集等都是零测集,并指出一元可积函数的图像也是零测集。这揭示了测度论中关于集合测度的重要概念。
摘要由CSDN通过智能技术生成

零测集的定义

A ⊂ R 2 A\subset \mathbb{R}^2 AR2 为平面点集. 如果任给 ε > 0 \varepsilon>0 ε>0,存在至多可数个闭矩形

I i , i = 1 , 2 , ⋯ I_i,i=1,2,\cdots Ii,i=1,2,

使得

A ⊂ U i ⩾ 1 I i ,    且    ∑ i ⩾ 1 v ( I i ) < ϵ A\subset U_{i\geqslant 1}I_i, \ \ 且\ \ \sum_{i\geqslant 1}v(I_i)<\epsilon AUi1Ii,    i1v(Ii)<ϵ

则称 A A A 为零测集

零测集的基本定理

  1. 有限点集均为零测集
  2. 零测集的子集均为零测集
  3. 可数个零测集之并仍为零测集
  4. 矩形的边是零测集
  5. f f f [ a , b ] [a,b] [a,b] 上的一元可积函数,则其图像 g r a p h ( f ) = { ( x , f ( x ) ) ∣ x ∈ [ a , b ] } ⊂ R 2 {\rm graph}(f)=\{(x,f(x))|x\in[a,b]\}\subset\mathbb{R}^2 graph(f)={(x,f(x))x[a,b]}R2 为零测集
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值