1、连接服务器,配好环境pytorch+cuda
2、创建自己的文件夹,然后在该文件夹中操作文件夹wx,cd wx
3、下载项目代码: git clone --recursive GitHub - sshaoshuai/PointRCNN: PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019. 4、配置依赖包:
pip install easydict
pip install tqdm
pip insatll tensorboardX
pip install fire
pip install numba
pip install pyyaml
pip install scikit-image
pip install shapely
5、
安装pytorch1.0.0:conda install pytorch==1.0.0 torchvision==0.2.1 cuda100 -c pytorch
打开python,并运行:import torch载入该模块,未报错则
6、安装pointnet2_lib
, iou3d
, roipool3d
库,具体方法:cd命令进入PiontRcnn目录,运行 sh build_and_install.sh
7、下载数据集
8、下载PointRCNN.pth
9、运行
10、运行下面命令来评估预训练模型:
python eval_rcnn.py --cfg_file cfgs/default.yaml --ckpt PointRCNN.pth --batch_size 1 --eval_mode rcnn --set RPN.LOC_XZ_FINE False
结果:
11、准备数据
python generate_gt_database.py --class_name 'Car' --split train