pointRCNN的复现:

1、连接服务器,配好环境pytorch+cuda

2、创建自己的文件夹,然后在该文件夹中操作文件夹wx,cd wx

3、下载项目代码: git clone --recursive ​​​​​​GitHub - sshaoshuai/PointRCNN: PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019. 4、配置依赖包:

pip install easydict
pip install tqdm
pip insatll tensorboardX 
pip install fire
pip install numba
pip install pyyaml
pip install scikit-image 
pip install shapely

5、

安装pytorch1.0.0:conda install pytorch==1.0.0 torchvision==0.2.1 cuda100 -c pytorch

打开python,并运行:import torch载入该模块,未报错则

 6、安装pointnet2_libiou3droipool3d库,具体方法:cd命令进入PiontRcnn目录,运行 sh build_and_install.sh

7、下载数据集

8、下载PointRCNN.pth

9、运行

10、运行下面命令来评估预训练模型:

python eval_rcnn.py --cfg_file cfgs/default.yaml --ckpt PointRCNN.pth --batch_size 1 --eval_mode rcnn --set RPN.LOC_XZ_FINE False

 结果:

 

 

 

 

11、准备数据

python generate_gt_database.py --class_name 'Car' --split train

 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值