R-FCN-3000, Segment Every Thing, YOLO9000

本文探讨了R-FCN-3000在ImageNet检测数据集上的优秀性能,其mAP达到34.9%,比YOLO 9000高出18%,同时保持30帧/秒的速度。文章提出了降低类别数以提升检测效率,并思考了使用未标注边界框的图片进一步训练的可能性。此外,还介绍了Segment Every Thing方法,它利用box branch的权重来迁移预测mask,减少了对mask标注数据的需求。最后提到了YOLO9000,以及Stage-wise训练与End-to-end joint训练的权衡。
摘要由CSDN通过智能技术生成

本文主要关注分类,检测和分割等任务训练数据的解耦,非常有趣。

R-FCN-3000
R-FCN-3000 obtains an mAP of 34.9% on the ImageNet detection dataset and outperforms YOLO 9000 by 18% while processing 30 images per second.

这里写图片描述

主要思路如上图,第一行将原来rfcn中的类别数降低(甚至降低到1变为检测是否存在物体)。【ps: Light-Head R-CNN也降低了这里的维度】。
第二行对roi进行细粒度分类。
思考: 是不是可以固定训练好的第一行,然后拿没有bounding box标注的图片来训练第二行的细粒度分类?

Segment Every Thing
这里写图片描述
基于mask rcnn。思路也很简单,提出通过box branch的bounding box weights来迁移预测mask weights。只要求部分训练数据拥有mask的标注。
Intuitively, the MLP mask predictor may better capture the ‘gist’ of an object while the FCN mask predictor may better capture the details (such as the object boundary).
另外讨论了Stage-wise training和End-to-end joint training的优缺点。

YOLO9000
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值