考研数学基础 之线性代数通法——Chapter6:合同对角化与二次型

考研数学基础 之线性代数通法——Chapter6:合同对角化与二次型

2022考研数学基础
主讲老师: 刘金峰 武忠祥

对称矩阵的对角化

考研范围内只考察实对称矩阵
以下内容所表述的对象均为实对称矩阵

性质

  • 对称矩阵的特征值为实数
  • 不同特征值对应的特征向量正交 (垂直,且表达的向量空间不同)

抽象实对称矩阵求特征向量

这三种属于简单题型,自己理解尝试写一下通法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

必考考点

这种属于考点

已 知 A α 1 = λ 1 α 1 , 且 λ 1 ≠ λ 2 = λ 3 , 求 α 2 , α 3 已知 A\alpha_1=\lambda_1\alpha_1,且\lambda_1\neq\lambda_2=\lambda_3,求\alpha_2,\alpha_3 Aα1=λ1α1,λ1=λ2=λ3,α2,α3

  • 解法
    α 1 T α 2 , 3 = 0 \alpha_1^T\alpha_{2,3}=0 α1Tα2,3=0 解出 α 2 与 α 3 \alpha_2与\alpha_3 α2α3
    在这里插入图片描述
    因为 λ 2 = λ 3 \lambda_2=\lambda_3 λ2=λ3, 所以 α 2 , α 3 \alpha_2,\alpha_3 α2,α3在同一个向量空间中,
    k 2 α 2 + k 3 α 3 k_2\alpha_2+k_3\alpha_3 k2α2+k3α3可以表示该向量空间中的任何向量
    所以可以找到两个 α 2 , α 3 \alpha_2,\alpha_3 α2,α3使得他们正交(这是为了后面的合同对角化准备的)

正交矩阵与合同对角化

正交矩阵的定义

Q T Q = E 或 Q Q T = E Q^TQ=E或QQ^T=E QTQ=EQQT=E

合同对角化

以三阶对角阵为例

  • step1: 求特征值

  • step2: 求三个正交的特征向量

    • 若三个 λ \lambda λ相等,则特征向量两两正交
    • 若仅有两个 λ 相 等 \lambda相等 λ则可以使用施密特正交化公式将特征向量正交化
      在这里插入图片描述
    • 推荐在计算特征向量的时候直接取值得到正交的矩阵
  • step3: 特征向量单位化得到 ( γ 1 , γ 2 , γ 3 ) (\gamma_1,\gamma_2,\gamma_3) (γ1,γ2,γ3)

  • step4: Q = ( γ 1 , γ 2 , γ 3 ) , 则 Q 为 正 交 矩 阵 , 且 Q T A Q = Λ Q=(\gamma_1,\gamma_2,\gamma_3),则Q为正交矩阵 ,且Q^TAQ=\Lambda Q=(γ1,γ2,γ3),Q,QTAQ=Λ
    其 中 Λ 以 A 的 特 征 值 为 对 角 元 其中 \Lambda以A的特征值为对角元 ΛA

二次型及其标准型

二次型对应数一中的曲线方程, 其几何意义可以用来判断曲线的形状
例如
x 2 + y 2 + z 2 = 1 代 表 球 面 ( 全 正 ) x^2+y^2+z^2=1 代表球面(全正) x2+y2+z2=1()
x 2 + 2 y 2 + 3 z 2 = 1 代 表 椭 球 面 ( 全 正 ) x^2+2y^2+3z^2=1 代表椭球面(全正) x2+2y2+3z2=1()
x 2 + y 2 − 2 z 2 = 1 代 表 单 叶 双 曲 面 ( 一 个 负 号 ) x^2+y^2-2z^2=1 代表单叶双曲面(一个负号) x2+y22z2=1()
注: x 2 + y 2 − 2 z 2 = 1 看 作 y 2 − 2 z 2 绕 z 轴 旋 转 得 到 x^2+y^2-2z^2=1看作y^2-2z^2绕z轴旋转得到 x2+y22z2=1y22z2z
x 2 − y 2 − z 2 = 1 代 表 双 叶 双 曲 面 ( 两 个 负 号 ) x^2-y^2-z^2=1 代表双叶双曲面(两个负号) x2y2z2=1()
注: x 2 − y 2 − z 2 = 1 看 作 x 2 − y 2 = 1 绕 x 轴 旋 转 得 到 x^2-y^2-z^2=1看作x^2-y^2=1绕x轴旋转得到 x2y2z2=1x2y2=1x

不难发现, 上面的例子都是只含平方项的式子,因此比较好判断,但是对于一般的式子,如
在这里插入图片描述
显然不能看正负号来判断其曲面的形状
因此对应到线性代数中这个式子被称为二次型
化成只剩平方项之后的形式被称为标准形

标准型才是我们需要的结果,可以通过其平方项的正负轻松的判断出曲线的形状

系数矩阵

证明见笔记
在这里插入图片描述

二次型转为标准形步骤(正交变换法)

  • 写出系数矩阵A
  • 求A的特征值
  • 求A的特征向量(然后正交化+单位化)
  • Q = ( γ 1 , γ 2 , γ 3 ) , x = Q y 的 变 换 下 得 到 二 次 型 的 标 准 形 : Q=(\gamma_1,\gamma_2,\gamma_3),x=Qy的变换下得到二次型的标准形: Q=(γ1,γ2,γ3),x=Qy:
    f = λ 1 ∗ y 1 2 + λ 2 ∗ y 2 2 + λ 3 ∗ y 3 2 f=\lambda_1*y_1^2+ \lambda_2*y_2^2+ \lambda_3*y_3^2 f=λ1y12+λ2y22+λ3y32
    注:: 这样变换可以保证x与y是可逆变换, 因为 Q 可逆, 因此 最后得到的结果可以变换回 x 的方程
    所以他们的形状相同

二次型转为标准形步骤(配方法)

需要注意所使用的的变化矩阵需要可逆
在这里插入图片描述
变换矩阵必须可逆
注: 上图中圈起来的 y 3 y_3 y3因为在原二次型方程中没有对应的平方项,所以在换元的时候,原则上是可以随便写的,为了方便起见,这里就写了个 x 3 x_3 x3

二次型转的标准形转换为规范形

规范形在二次型的基础上将系数都变成了 1 , − 1 , 0 1,-1,0 1,1,0
在这里插入图片描述

二次型转的正定性

了解一下就可以了

判断二次型的正定性方法

可以化成标准型/计算特征值来判断
在这里插入图片描述
不过做题也多用下面这种
在这里插入图片描述
在这里插入图片描述
证明见笔记,自己想一遍

判断二次型的正定性步骤

  • 写出系数矩阵
  • 依次判断 1,2,3…阶行列式的正负
    在这里插入图片描述

一道含坑的题目(考察正定性与转换矩阵可逆的条件)

在这里插入图片描述
标准的错误,经典的零分 答法
在这里插入图片描述

然后再 f = y 1 2 + y 2 2 + y 3 2 , 所 以 是 正 定 矩 阵 f=y_1^2+y_2^2+y_3^2, 所以是正定矩阵 f=y12+y22+y32,
这种解法是标准的错误,经典的零分, 没有理解转换矩阵可逆的条件, 这里我们写出转换矩阵y=Qx, 虽然f(y)的方程是正定的,但是因为Q不可逆,所以这里的 y 不能通过可逆变换变成x, 所以它与原先的方程不等价。
正确做法, 将方程展开,使用通法求解,可以自己算一下,方法如例题,答案是非正定矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Joker-Tong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值