论文阅读:2024 ICML Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study

Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study

https://www.doubao.com/chat/3506902534329346

https://arxiv.org/pdf/2404.10719

速览

这篇论文主要探讨了大语言模型对齐中两种主流方法——**DPO(直接偏好优化)PPO(近端策略优化)**的优劣,并通过理论分析和实验对比得出了关键结论。以下是核心内容的通俗解读:

1. 背景:大语言模型的对齐问题
大语言模型(如ChatGPT)在实际应用中需要符合人类偏好,这一过程称为对齐(Alignment)。目前主流方法是RLHF(人类反馈强化学习),分为两类:

  • 基于奖励模型的方法(如PPO):先训练一个奖励模型判断回答好坏࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值