MPI重建知识整理

​ 最近学习了基于X空间的磁粒子成像理论。正好凑时间复习/整理一下最近学习的磁粒子成像的基本理论框架,包含两部分:

​ 1.基于系统矩阵的MPI重建知识整理

​ 2.基于x空间的MPI重建知识整理

​ 梳理内容包括:仿真常用的公式,成像(仿真)流程。刚刚入门MPI如有错误还望指正!

1. 基于系统矩阵的MPI重建知识整理

1.1 基于测量的系统矩阵方法:

正向信号采集过程

​ 首先,系统矩阵作为设备的“默认属性“,需要被先获取到,才能进行后续的成像工作;因此,应首先采样FOV内所有位置处的系统函数,然后将所有位置处的系统函数组成系统矩阵(System Matrix, SM) S S S,作为该设备的已知“属性”。获取到系统矩阵后,即可进行后续的扫描成像任务。

​ 对于任意形状的仿体或临床中的任意”目标“,被MPI设备扫描后,通过接收线圈获取到对应的响应信号 u ^ \hat u u^,那么一个完整的成像过程可以被描述为:
S c = u ^ ( 1 ) Sc = \hat u \qquad \qquad (1) Sc=u^(1)
​ 其中:
u ^ : = ( u ~ k P ) k = 0 K − 1 ∈ C K c : = ( c ( r n ) n = 0 N − 1 ) ∈ R N S = ( Δ V s ^ k ( r n ) ) k = 0... , K − 1 ; n = 0 , . . . , N − 1 ∈ C K × N ( 2 ) \hat u :=(\tilde u_k^P)_{k=0}^{K-1} \in \mathbb{C}^K \\ c:= (c(r_n)_{n=0}^{N-1}) \in \mathbb{R}^N \\ S = (\Delta V \hat s_k(r_n))_{k=0...,K-1;n=0,...,N-1} \in \mathbb{C}^{K\times N} \qquad\qquad (2) u^:=(u~kP)k=0K1CKc:=(c(rn)n=0N1)RNS=(ΔVs^k(rn))k=0...,K1;n=0,...,N1CK×N(2)
k k k:表示粒子响应信号的 k k k次谐波; K K K:表示考虑的总的谐波数量; r n r_n rn表示FOV中的第 n n n个位置点; N N N表示总的位置数; c c c表示粒子浓度; Δ V \Delta V ΔV:表示位置 n n n处样本的体积。

特点:需要采集FOV内所有位置处的系统函数。在FOV中特定的特定点处,放置已知浓度的微小样本进行采样,获取该点处样本的响应信号,作为此处粒子样本的存在标识。然后,移动样本至下一个位置,进行相同的过程,直到采样完FOV中所有的位置点。

重建过程:重建过程,可以被简单的描述为,求解粒子在仿体/目标中的空间分布(浓度)。通过上面的过程描述可知,系统矩阵 S S S事先被获取到,信号 u ^ \hat u u^是仿体或任意目标中粒子的响应,这两个变量都可作为已知量,因此可以通过求解上式(1)获得重建图像。常用的重建算法有Kaczmarz、ADMM等。关于Kaczmarz算法的原理可以参考:Kaczmarz迭代算法在磁粒子成像(MPI)中的应用

优、缺点:暂不具体描述

1.2 基于模型的系统矩阵方法:

​ 在介绍基于模型的系统矩阵之前,首先阐述一下为什么引入基于模型的系统矩阵方法?通过1.2小结的描述可知,基于测量的SM需要逐个扫描FOV中的每个位置以获取对应位置处的系统函数,这一过程非常耗费时间。此外,SM严重依赖设备参数,当MPI设备(磁场、粒子、线圈等)发生变化时,往往需要重新测量SM,进一步增加时间成本。因此,引入基于模型的SM方法,希望在保证重建质量的情况下,降低SM的获取成本。

​ 什么是基于模型的SM方法呢?基于模型中的”模型“是指的描述粒子特性的模型,通常使用郎之万(Langevin)模型和福克普朗克(Fokker-planck)模型。因此,基于模型的SM方法,通常是基于这两种模型(之一)和设备特性推导出理想的SM: s ^ K m o d e l \hat s_K^{model} s^Kmodel,然后实测少量位置处的系统函数: s ^ k m e a s \hat s_k^{meas} s^kmeas,使用实测的 s ^ k m e a s \hat s_k^{meas} s^kmeas估计真实的SM。

​ 接下来又有一个新的问题:通过实测 s ^ k m e a s \hat s_k^{meas} s^kmeas和模型 s ^ K m o d e l \hat s_K^{model} s^Kmodel估计出真实SM?一般的,可以通过求解优化问题,得到 s ^ k m e a s \hat s_k^{meas} s^kmeas s ^ K m o d e l \hat s_K^{model} s^Kmodel之间的放缩系数 a ^ k \hat a_k a^k,其中 k k k表示频率分量索引, 整个过程用公式表示为:
χ ( a ^ k ) = ∑ n = 0 N ′ − 1 ∣ s ^ k m e a s ( r n ) − a ^ k s ~ k m o d e l ( r n ) ∣ 2 ( 3 ) \chi{(\hat a_k)}=\sum_{n=0}^{N'-1}|\hat s_k^{meas}(r_n)-\hat a_k \tilde s_k^{model}(r_n)|^2 \qquad \qquad(3) χ(a^k)=n=0N1s^kmeas(rn)a^ks~kmodel(rn)2(3)

a ^ k \hat{a}_k a^k可以通过下式求解:
a ^ k = ∑ n = 0 N ′ − 1 s ^ k m e a s ( r n ) ( s ~ k m o d e l ( r n ) ) ∗ ∑ n = 0 N ′ − 1 ∣ s ~ k m o d e l ( r n ) ∣ 2 ( 4 ) \hat{a}_k=\frac{\sum_{n=0}^{N'-1}\hat{s}_k^{meas}(r_n)(\widetilde{s}_k^{model}(r_n))^*}{\sum_{n=0}^{N'-1}|\widetilde{s}_k^{model}(r_n)|^2} \qquad \qquad (4) a^k=n=0N1s kmodel(rn)2n=0N1s^kmeas(rn)(s kmodel(rn))(4)
理解 a ^ k \hat{a}_k a^k其实就是一个缩放因子,用来拟合基于模型计算的系统矩阵和对应位置测量得到的系统矩阵。通过有限个位置的测量系统矩阵,最小化拟合误差求解出一个合适的 a ^ k \hat{a}_k a^k

2. 基于X空间的MPI重建知识整理

2.1 X空间方法介绍

​ 基于X空间的方法将正向信号产生的过程描述为,粒子分布与点扩散函数(Point Spread Function, PSF)的卷积。此处,将郎之万函数的导数作为系统的PSF。公式表示为:X-Space论文参考
s ( t ) = B 1 d Φ d t = B 1 m ρ ( x ) ∗ L ˙ [ k G x ] ∣ x = x s ( t ) k G x ˙ s ( t ) ( 5 ) s(t)=B_1\frac{d\Phi}{dt}=B_1m\rho(x)*\dot L[kGx]\Big|_{x=x_s(t)}kG\dot x_s(t) \qquad \qquad (5) s(t)=B1dtdΦ=B1mρ(x)L˙[kGx] x=xs(t)kGx˙s(t)(5)
​ 怎么由信号得到图像呢?论文中描述粒子密度与PSF的卷积即为重建图像。表示为:
I M G ( x s ( t ) ) = s ( t ) B 1 m k G x ˙ s ( t ) = ρ ( x ) ∗ L ˙ [ k G x ] ∣ x = x s t \begin{aligned} IMG(x_s(t))&=\frac{s(t)}{B_1mkG\dot x_s(t)} \\ &=\rho(x)*\dot L[kGx]\Big |_{x=x_s{t}} \\ \end{aligned} IMG(xs(t))=B1mkGx˙s(t)s(t)=ρ(x)L˙[kGx] x=xst

​ 实际计算的时候,通常是将信号与位置对应后,对速度归一化,即为某一位置粒子浓度。基于X空间的方法,理论上较简单,但是目前个人理解的还不深入,仅供参考。

2.2 X空间为什么被叫做X空间

​ 一个问题:X空间方法为什么被叫做X空间?(以下为个人理解)

​ 回答这个问题,需要回到第一篇X空间的文章(上面那篇),文章在Background中提到了一句话我觉得是理解X空间命名的关键,即“In this paper, we will show that MPI can be understood as a x-domain scanning process and, as such, reconstructed quickly and simply”。MPI可以被理解为一个X域的扫描过程。

什么是X域?

​ 这篇文章是第一篇提出X空间的文章,并且只在一维空间验证X空间理论,一维空间用什么表示呢?位置x。文章中的理论证明都是基于位置x推导,如位置x处的总场强,位置x处的粒子磁化强度,位置x处的信号。所以综上,X域就是表示空间内的某一方向。那么X空间(X-Space)就是位置空间(成像空间,或者FOV?),这点在多维X空间的文献中也可以被证实,文章中的理论推导部分使用x表示真实中间中的位置,例 x = [ x , y , z ] T \pmb{x} = [x, y, z]^T x=[x,y,z]T多维X空间文献

3. 仿真常用公式整理

默认参数:

参数名符号表示
粒子直径D
粒子饱和磁化强度M_S
四氧化三铁密度d_Fe3O4
四氧化三铁摩尔质量m_Fe3O4
溶液铁浓度c_Fe
溶液体积V_s
真空磁导率u_0
玻尔兹曼常数k_B
温度T_p
接收灵敏度S

磁场参数:

参数名符号表示
激励场幅值A_E
激励场频率f_E
梯度场梯度G

公式:

粒子体积:
V = 1 6 ∗ π ∗ D 3 V=\frac{1}{6}*\pi*D^3 V=61πD3
磁矩:
m = V ∗ M S m=V*M_S m=VMS
粒子核质量:
m c = d F e 3 O 4 ∗ V m_c=d_{Fe3O4}*V mc=dFe3O4V
粒子核中铁摩尔量:
m F e = 3 ∗ m c m F e 3 O 4 m_{Fe}=\frac{3*m_c}{m_Fe3O4} mFe=mFe3O43mc

激励场:
H E = A E ∗ c o s ( 2 ∗ π ∗ f E ∗ t ) H_E =A_E*cos(2*\pi*f_E*t) HE=AEcos(2πfEt)
郎之万函数中 β \beta β计算:
β : = u 0 ∗ m k B ∗ T p \beta:=\frac{u_0*m}{k_B*T_p} β:=kBTpu0m
溶液中四氧化三铁浓度:
c = c F e 56 ∗ m F e c = \frac{c_{Fe}}{56*m_{Fe}} c=56mFecFe
灵敏度:
S = S u 0 S=\frac{S}{u_0} S=u0S
FOV范围:
F O V = A E ∗ 2 G FOV = \frac{A_E*2}{G} FOV=GAE2
郎之万函数:
L ( ξ ) = { ( c o t h ( ξ ) ) − 1 ξ ξ ≠ 0 0 ξ = 0 L(\xi) =\left\{ \begin{aligned} (coth(\xi))-\frac{1}{\xi} \quad \xi \neq0 \\ 0 \quad \xi = 0 \end{aligned} \right. L(ξ)= (coth(ξ))ξ1ξ=00ξ=0
粒子磁化特性:(此处的H为总磁场强度,可以理解为某位置处粒子随磁场变化的响应)
M ( H ) = c m L ( β H ) M(H)=cmL(\beta H) M(H)=cmL(βH)
粒子磁化特性的导数:
M ′ ( H ) = c m β L ′ ( β H ) M'(H)=cm\beta L'(\beta H) M(H)=cmβL(βH)
郎之万函数的导数:
L ′ ( ξ ) = { ( 1 ξ 2 − 1 s i n h 2 ( ξ ) ) ξ ≠ 0 1 3 ξ = 0 L'(\xi) =\left\{ \begin{aligned} (\frac{1}{\xi ^2}-\frac{1}{sinh^2(\xi)}) \quad \xi \neq0 \\ \frac{1}{3} \quad \xi = 0 \end{aligned} \right. L(ξ)= (ξ21sinh2(ξ)1)ξ=031ξ=0
粒子响应信号:
u P ( t ) = − u 0 ∫ O b j e c t S ( r ) ∂ M ( r , t ) ∂ t d 3 r u^P(t)=-u_0\int_{Object}S(r)\frac{\partial M(r,t)}{\partial t}d^3r uP(t)=u0ObjectS(r)tM(r,t)d3r

  • 26
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值