一.线性函数(9.10)
1.概念:
2.表达式:
二.对偶空间(9.10)
以下只研究有限维的线性函数空间
1.线性函数空间
(1)概念:
(2)维数:
(3)基:
2.对偶空间与对偶基
(1)概念:
注意:当 V V V为域 F F F上的无限维线性空间时,我们不把 H o m ( V , F ) Hom(V,F) Hom(V,F)记作 V ∗ V^* V∗
(2)对偶基下函数的坐标:
(3)对偶基的过渡矩阵:
定理1:设 V V V是域 F F F上的 n n n维线性空间,在 V V V中取2个基 α 1 . . . α n α_1...α_n α1...αn与 β 1 . . . β n , V ∗ β_1...β_n,V^* β1...βn,V∗中相应的对偶基分别为 f 1 . . . f n f_1...f_n f1...fn与 g 1 , g n g_1,g_n g1,gn,如果 V V V中基 α 1 . . . α n α_1...α_n α1...αn到基 β 1 . . . β n β_1...β_n β1...βn的过渡矩阵是 A A A,那么 V ∗ V^* V∗中基 f 1 . . . f n f_1...f_n f1...fn到基 g 1 , g n g_1,g_n g1,gn的过渡矩阵 B B B为 B = ( A − 1 ) ′ ( 17 ) B=(A^{-1})'\qquad(17) B=(A−1)′(17)
(4)向量在对偶空间中的象:
3.双重对偶空间:
4.自然同构: