高等代数 线性映射(第9章)6 线性函数与对偶空间

一.线性函数(9.10)
1.概念:
在这里插入图片描述
在这里插入图片描述
2.表达式:
在这里插入图片描述
在这里插入图片描述
二.对偶空间(9.10)

以下只研究有限维的线性函数空间

1.线性函数空间
(1)概念:
在这里插入图片描述
(2)维数:
在这里插入图片描述
(3)基:
在这里插入图片描述
2.对偶空间与对偶基
(1)概念:
在这里插入图片描述

注意:当 V V V为域 F F F上的无限维线性空间时,我们不把 H o m ( V , F ) Hom(V,F) Hom(V,F)记作 V ∗ V^* V

(2)对偶基下函数的坐标:
在这里插入图片描述
在这里插入图片描述
(3)对偶基的过渡矩阵:

定理1:设 V V V是域 F F F上的 n n n维线性空间,在 V V V中取2个基 α 1 . . . α n α_1...α_n α1...αn β 1 . . . β n , V ∗ β_1...β_n,V^* β1...βn,V中相应的对偶基分别为 f 1 . . . f n f_1...f_n f1...fn g 1 , g n g_1,g_n g1,gn,如果 V V V中基 α 1 . . . α n α_1...α_n α1...αn到基 β 1 . . . β n β_1...β_n β1...βn的过渡矩阵是 A A A,那么 V ∗ V^* V中基 f 1 . . . f n f_1...f_n f1...fn到基 g 1 , g n g_1,g_n g1,gn的过渡矩阵 B B B B = ( A − 1 ) ′ ( 17 ) B=(A^{-1})'\qquad(17) B=(A1)(17)
在这里插入图片描述

(4)向量在对偶空间中的象:
在这里插入图片描述
3.双重对偶空间:
在这里插入图片描述
在这里插入图片描述
4.自然同构:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值