线性代数(4)- 线性映射第二讲

线性代数(4)- 线性映射第二讲

矩阵

  m,n是正整数,则m行n列的矩阵是一个数阵,每个元素都取于 F F F A = [ A 1 , 1 ⋯ A 1 , n ⋮ ⋱ A m , 1 ⋯ A m , n ] A= \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \ddots \\ A_{m,1} & \cdots & A_{m,n} \\ \end{bmatrix} A=A1,1Am,1A1,nAm,n

线性映射的矩阵

   T ∈ L ( V , W ) ,   v 1 , … , v n T \in L(V,W),\ v_1,\dots,v_n TL(V,W), v1,,vn V V V的一个基, w 1 , … , w m w_1,\dots,w_m w1,,wm W W W的一个基,则 T T T的矩阵是一个m行n列的矩阵,记为 M ( T ) M(T) M(T),每一项 A j , k A_{j,k} Aj,k定义为 T V k = A 1 , k w 1 + ⋯ + A m , k w m T_{V_k}=A_{1,k}w_1+\dots+A_{m,k}w_m TVk=A1,kw1++Am,kwm  亦可用 M ( T , ( v 1 , … , v n ) , ( w 1 , … , w m ) ) M(T,(v_1,\dots,v_n),(w_1,\dots,w_m)) M(T,(v1,,vn),(w1,,wm))简记

矩阵加法和数乘

  两个相同大小的矩阵 A , C A,C A,C的加法定义为 ( A + C ) j , k = A j , k + C j , k (A+C)_{j,k}=A_{j,k}+C_{j,k} (A+C)j,k=Aj,k+Cj,k

  可推出, S , T ∈ L ( V , W ) , M ( S + T ) = M ( S ) + M ( T ) S,T\in L(V,W),M(S+T)=M(S)+M(T) S,TL(V,W),M(S+T)=M(S)+M(T)

  矩阵 A A A的数乘定义为 ( λ A ) j , k = λ A j , k (\lambda A)_{j,k}=\lambda A_{j,k} (λA)j,k=λAj,k

  可推出, λ ∈ F , T ∈ L ( V , W ) , M ( λ T ) = λ M ( T ) \lambda \in F,T\in L(V,W),M(\lambda T)=\lambda M(T) λF,TL(V,W),M(λT)=λM(T)

  m行m列的矩阵的集合记为 F m , n F^{m,n} Fm,n

  可推出, F m , n F^{m,n} Fm,n是一个维度为 m n mn mn的向量空间

矩阵乘法

  矩阵A是m行n列的,矩阵C是n行p列的,则AC被定义为m行p列的矩阵 ( A C ) j , k = ∑ r = 1 n A j , r C r , k (AC)_{j,k}=\sum_{r=1}^{n}A_{j,r}C_{r,k} (AC)j,k=r=1nAj,rCr,k

  可推出, T ∈ L ( U , V ) , S ∈ L ( V , W ) , M ( S T ) = M ( S ) M ( T ) T\in L(U,V),S\in L(V,W),M(ST)=M(S)M(T) TL(U,V),SL(V,W),M(ST)=M(S)M(T)

  亦可知,矩阵乘法的每一项,是 A A A的对应行和 C C C的对应列的乘积和结果

  或者,矩阵乘法的每一列,是整个矩阵 A A A C C C的对应列乘积结果

  如果 C C C是列向量,则矩阵乘法可以看成是 A A A的每一列和 C C C的线性组合

  矩阵乘法满足结合律,和加法满足分配律

线性映射的可逆性

  一个线性映射 T ∈ L ( V , W ) T\in L(V,W) TL(V,W)被称为可逆的(Invertible),如果存在一个 S ∈ L ( W , V ) S\in L(W,V) SL(W,V),使得 S T = I ,   T S = I ST=I,\ TS=I ST=I, TS=I(两个 I I I处于不同向量空间)此时 S S S被称为 T T T的逆(Inverse),记为 T − 1 T^{-1} T1

  可推出,线性映射的逆唯一

  此外,线性映射是可逆的当且仅当它是一一映射且满射的

同构

  同构(isomorphism)

  An isomorphism is an invertible linear map.

  Two vector spaces are isomorphic if there is an isomorphism from one vector space onto the other one.

  有以下推论

  • 两个有限维度的向量空间是同构的,充要条件是它们有相同的维度大小

  • V , W V,W V,W的基向量固定时, M M M是一个 L ( V , W ) , F m , n L(V,W),F^{m,n} L(V,W),Fm,n上的同构

  • V , W V,W V,W是有限维度的,则 L ( V , W ) L(V,W) L(V,W)是有限维度的,且 d i m   L ( V , W ) = ( d i m   V ) ( d i m   W ) dim \ L(V,W)=(dim \ V)(dim \ W) dim L(V,W)=(dim V)(dim W)

算子

  一个 V V V V V V的线性映射称为算子(Operator)

   V V V上的所有算子组成的集合记为 L ( V ) L(V) L(V),事实上, L ( V ) = L ( V , V ) L(V)=L(V,V) L(V)=L(V,V)

  可推出, V V V是有限维度的, T ∈ L ( V ) T\in L(V) TL(V),则有 T T T是可逆的    ⟺    \iff T T T是一一映射的    ⟺    \iff T T T是满射的

一些推论

   W W W是有限维度的, T 1 , T 2 ∈ L ( V , W ) T_1,T_2 \in L(V,W) T1,T2L(V,W),则 n u l l   T 1 = n u l l   T 2 null\ T_1=null\ T_2 null T1=null T2当且仅当 ∃ S ∈ L ( W ) \exists S\in L(W) SL(W) S S S可逆,有 T 1 = S T 2 T_1=ST_2 T1=ST2

   V V V是有限维度的, T 1 , T 2 ∈ L ( V , W ) T_1,T_2 \in L(V,W) T1,T2L(V,W),则 r a n g e   T 1 = r a n g e   T 2 range\ T_1=range\ T_2 range T1=range T2当且仅当 ∃ S ∈ L ( V ) \exists S\in L(V) SL(V) S S S可逆,有 T 1 = T 2 S T_1=T_2S T1=T2S

   V , W V,W V,W都是有限维度的, T 1 , T 2 ∈ L ( V , W ) T_1,T_2\in L(V,W) T1,T2L(V,W),则 d i m   n u l l   T 1 = d i m   n u l l   T 2 dim\ null\ T_1=dim\ null\ T_2 dim null T1=dim null T2当且仅当 ∃ R ∈ L ( V ) , ∃ S ∈ L ( W ) \exists R\in L(V),\exists S\in L(W) RL(V),SL(W) L , S L,S L,S可逆,有 T 1 = S T 2 R T_1=ST_2R T1=ST2R

   V V V是有限维度的, S , T ∈ L ( V ) S,T\in L(V) S,TL(V) S T ST ST可逆当且仅当 S , T S,T S,T都可逆

   V V V是有限维度的, S , T ∈ L ( V ) S,T\in L(V) S,TL(V) S T = I ST=I ST=I当且仅当 T S = I TS=I TS=I

   V V V是有限维度的, S , T , U ∈ L ( V ) S,T,U\in L(V) S,T,UL(V) S T U = I    ⟹    T STU=I \implies T STU=IT可逆且 T − 1 = U S T^{-1}=US T1=US

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值