人工智能/机器学习基础知识——模型融合(Ensemble)

Ensemble

好文

机器之心

模型融合

Bagging

Bagging

  • Bagging通常考虑的是同质弱学习器,相互独立地并行学习这些弱学习器,并按照某种确定性地平均过程将它们组合起来

  • Bagging的弱学习器一般选择低偏置高方差的模型,最后获得一个低方差的模型,缓解过拟合

  • 代表模型:随机森林(Random Forest)

Voting(Classification)

Voting就是引入多个模型对同一个分类目标(标签)进行决策

  • 例如,现有一个多标签分类的问题,单个样本输入,多个标签输出。判断是否为某标签的方法是该标签对应的概率值是否大于0.5。

  • 引入Voting之后,假设有3个独立相关性低的模型进行Voting。对于一个样本的某一个标签有无的判断是:若三个模型对于该标签的预测值大于0.5有2个或2个以上,那么就认为该标签有。

Avergae(Regression)

对多个模型的输出结果进行简单的加和取平均,通常用于回归任务

Boosting

Boosting

  • Boosting通常考虑的也是同质弱学习器。它以一种高度自适应的方法顺序地学习这些弱学习器(每个基础模型都依赖于前面的模型),并按照某种确定性的策略将它们组合起来

  • Boosting的弱学习器一般选择高偏置低方差的模型,最后获得一个低偏置的模型,增强模型拟合程度

  • 代表模型:梯度提升树(Gradient Boosting Tree)、AdaBoost

Stacking & Blending

CSDN

Stacking & Blending

  • Stacking & Blending通常考虑的是异质弱学习器,并行地学习它们,并通过训练一个元模型将它们组合起来,根据不同弱模型的预测结果输出一个最终的预测结果

  • 具体做法

    • 将训练集划分为两组
    • 选择L个弱学习器,用它们拟合第一组数据
    • 用训练好的L个学习器中的每个学习器对第二组数据进行预测
    • 用L个弱学习器对第二组数据的预测输出作为元模型的输入,在第二组数据上拟合元模型
    • 上述为Blending的做法,加上K-Fold Cross Validation之后就是Stacking
  • 代表模型:None

Bias & Variance Tradeoff

偏置与方差的权衡

  • Bias:模型的准确度,可理解为模型预测的某个值与真实值之间的量化差距。偏置越高代表模型越欠拟合,偏置越低代表模型拟合地越好

  • Variance:模型的拟合能力,可理解为模型在训练集上拟合得很好,但在其他数据集上拟合得比较差。方差越高代表模型越过拟合,方差越小代表模型抗过拟合能力越强

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值