你有没有发现,现在的 AI 世界就像一场没有终点的“技术竞速”?DeepSeek 的热度还未平息,Grok 又推出了“地球上最聪明的 AI”,紧接着 GPT-4.5 再度刷屏,明天又会是哪个新技术引爆话题?
大模型的迭代速度快得让人目不暇接,仿佛我们才刚刚适应一个版本的特性,新的“惊喜”就已经到来。面对这种节奏,你是选择继续停留在表面,还是希望深入了解大模型的内在机制,掌握大模型背后的技术精髓?如果你希望做出更深层的探索,那么这本《大模型技术30讲》,绝对值得一读。
这不是一本“理论书”,而是一本“成长书”
现在,学习 AI 变得越来越容易,许多教程手把手教你调用 API,调整几个参数,就能跑出不错的结果。但如果仅仅停留在“怎么用”的层面,可能会遇到不少挑战。当新版本发布,老方法不再适用,却不知道问题出在哪里。在面试中被问到模型优化原理,只能回答一些表面概念,甚至在实际项目中遇到 bug,排查起来却毫无头绪。
深入理解大模型的底层逻辑,才能真正提升技术能力,游刃有余地应对变化。《大模型技术30讲》正是为此而来,帮助你建立系统的知识框架,让你不仅“会用”,更能“看懂、调优、解决问题”。
有一些 AI 图书,要么是面向小白的“入门读物”,只讲皮毛;要么是面向研究人员的“理论教材”,充满数学推导,看得让人头疼。这本书介于两者之间,它既有深度,又足够通俗。
作者采用了独特的“一问一答”教学方式,每一章都围绕一个与机器学习、深度学习和人工智能相关的核心问题展开。每个问题都有清晰的解释,并且配有图表帮助理解,还附带练习,让你可以检查自己是否真正掌握了所学的内容。很多章节还提供了参考资料,方便深入了解。通过这些简单易懂的讲解,入门机器学习不再是一件困难事。
书中内容涵盖的主题很广泛,不仅有对现有技术架构如卷积神经网络的新见解,让你能更高效地运用它们,还包括一些前沿技术,比如 LLM 和计算机视觉 Transformer 架构的底层原理等等。即使你已经有一定经验,它也能帮你扩展技术视野,获得新的知识。
在学习时,你可能会接触到一些全新的概念和思维方式,但别担心,这不是一本枯燥的技术手册。书里没有复杂的数学推导,也不需要你亲手敲代码。你可以在通勤时翻一翻,也可以在周末的午后,泡上一杯咖啡,坐在阳光下,轻松地走进 AI 的世界。
读完这本书可以收获哪些知识?
这本书的每一章都围绕 AI 领域最关键的技术点展开,涵盖五大核心主题:
-
神经网络与深度学习——大模型是怎么工作的?如何提升训练效率?如何优化模型结构?
-
计算机视觉——为什么 Transformer 也能做 CV?ViT 和 CNN 的核心差别是什么?
-
自然语言处理(NLP)——GPT、BERT 到底怎么运作?微调大模型的正确姿势是什么?
-
生产与部署——如何让大模型在有限资源下高效推理?量化、蒸馏到底有多大作用?
-
模型评测与优化——怎么知道你的模型真的有效?如何避免训练集和测试集的偏差?
如果你是开发者,这本书会帮你掌握更高效的训练和部署技巧,让你的模型跑得更快、更稳。如果你是研究人员,它会帮助你搭建更扎实的技术体系,理解当下最前沿的 AI 思路。如果你是 AI 爱好者,它会让你在面对最新技术时,不再是“只会看新闻”,而是真正理解它的运行原理。
不管你处在什么学习阶段,这本书都能给你很大帮助。附上本书的目录思维导图,大家可以提前预览。
作译者简介
作者塞巴斯蒂安·拉施卡(Sebastian Raschka) 极具影响力的人工智能专家,GitHub 项目 LLMs-from-scratch 的 star 数达 40.2k。 现在大模型独角兽公司 Lightning AI 任资深研究工程师。博士毕业于密歇根州立大学,2018~2023 年威斯康星大学麦迪逊分校助理教授(终身教职),从事深度学习科研和教学。 除本书外,他还写作了畅销书《从零构建大模型》和《Python机器学习》。
译者叶文滔,中国计算机学会自然语言处理专委会委员。曾任职于字节跳动、蚂蚁集团、星环科技、平安科技等互联网科技企业,负责过多个人工智能、大模型领域研发项目,并拥有多项人工智能相关专利,并著有多篇相关论文。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓