题目一
题干
给定一个数a,这个a是可以由一组m个连续的正整数相加得到的,求这个m的最小值。举例:a=21=1+2+3+4+5+6=10+11,会发现10和11是最小的,返回m为2。
解法
要找到一个数 a 可以由一组 m 个连续的正整数相加得到的最小值 m ,我们可以使用数学方法和Python编程来解决。
我们需要检查 m 个连续整数的和是否等于 a 。如果设这 m 个连续整数从 k 开始,则它们的和为:
a = k + ( k + 1 ) + ( k + 2 ) + ⋯ + ( k + m − 1 ) = m ( 2 k + m − 1 ) 2 a = k + (k+1) + (k+2) + \cdots + (k+m-1) = \frac{m(2k + m - 1)}{2} a=k+(k+1)+(k+2)+⋯+(k+m−1)=2m(2k+m−1)
这里运用的是等差数列求和公式。我们在这个公式中需要找出最小的 m。
通过遍历可能的 m 值,我们可以求解这个问题。以下是一个Python函数实现:
代码
def find_min_m(a)