Deep Learning:正则化(六)

Semi-Supervised Learning

In the paradigm of semi-supervised learning, both unlabeled examples from P(x) and labeled examples from P (x, y) are used to estimate P (y | x) or predict y from x.

  • In the context of deep learning, semi-supervised learning usually refers to learning a representation h = f (x). The goal is to learn a representation so that examples from the same class have similar representations.
  • Unsupervised learning can provide useful cues for how to group examples in representation space. Examples that cluster tightly in the input space should be mapped to similar representations.
  • A long-standing variant of this approach is the application of principal components analysis as a pre-processing step before applying a classifier (on the projected data).

Instead of having separate unsupervised and supervised components in the model, one can construct models in which a generative model of either P (x) or P(x, y) shares parameters with a discriminative model of P(y | x).
One can then trade-off the supervised criterion − log P(y | x) with the unsupervised or generative one (such as − log P (x) or − log P(x, y)).
The generative criterion then expresses a particular form of prior belief about the solution to the supervised learning problem, namely that the structure of P (x) is connected to the structure of P(y | x) in a way that is captured by the shared parametrization.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值