自编码器:可以使用自身的高阶特征编码自己。自编码器通常希望使用少量稀疏的高阶特征来重构输入,加入几种限制:
- 限制中间隐含层节点的数量,比如小于输入输出节点的数量,就相当于一个降维的过程。如果再给中间隐含层的权重加一个L1的正则,则可以根据惩罚系数控制隐含节点的稀疏程度,惩罚系数越大,学到的特征组合越稀疏,实际使用的特征数量越少。
如果给数据加入噪声,就是Denoising AutoEecoder(去噪自编码器),我们将从噪声中学习出数据的特征。同样,完全复制并不能去除我们添加的噪声,无法完全复原数据。
Tensorflow实现自编码器:
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 定义xavier initialization,它的特点是会根据某一层网络的输入、输出节点数量自动调整最合适的分布。
# Xavier 和 Bengio 在一篇论文中指出,如果深度学习模型的权重初始得太小,那信号将在每层间传递时逐渐缩小而难以产生作用,
# 但如果权重初始化得太大,那信号将在每层间传递时逐渐放大并导致发散和失效。而Xaiver初始化器做的事情就是让权重被初始化
# 得不大不小,正好合适。
def xavier_init(fan_in, fan_out, constant = 1):
low = -constant * np.sqrt(6.0 / (fan_in + fan_out))
high = constant * np.sqrt(6.0 / (fan_in + fan_out))
return tf.random_uniform((fan_in, fan_out), minval=low, maxval=high,
dtype=tf.float32)
# 定义一个去噪自编码的class
class AdditiveGaussianNoiseAutoencoder(object):
# 构建函数:包括__init__函数,还有一些常用的成员函数
def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(), scale=0.1):
self.n_input = n_input
self.n_hidden = n_hidden
self.transfer = transfer_function
self.scale = scale
network_weights = self._initialze_weights()
self.weights = network_weights
# 接下来开始定义网络结构,这里只使用一个隐含层
self.x = tf.placeholder(tf.float32, [None, self.n_input])
self.hidden = self.transfer(tf.add(tf.matmul(
self.x + scale * tf.random_uniform((n_input,)),
self.weights['w1']), self.weights['b1']
))
self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
# 定义自编码器的损失函数,使用SE
self.cost = 0.5 * tf.reduce_mean(tf.pow(tf.subtract(self.reconstruction, self.x), 2))
# 定义优化器
self.optimizer = optimizer.minimize(self.cost)
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)
def _initialize_weights(self):
all_weights = dict()
all_weights['w1'] = tf.Variable(xavier_init(self.n_input,
self.n_hidden))
all_weights['b1'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
all_weights['w2'] = tf.Variable(xavier_init(self.n_hidden,
self.n_input))
all_weights['b1'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
return all_weights
# 定义执行一步训练的函数partial_fit
def partial_fit(self, X):
cost, opt = self.sess.run((self.cost, self.optimizer),
feed_dict={self.x: X, self.scale: self.traning_scale})
return cost
# 定义执行一步测试的函数calc_total_cost
def calc_total_cost(self, X):
return self.sess.run(self.cost, feed_dict={self.x: X, self.scale: self.traning_scale})
# 定义transform函数,它返回自编码器隐含层的输出结果。它的目的是来获取抽象后的特征,自编码器的隐含层的
# 最主要功能就是学习出数据中的高阶特征
def transform(self, X):
return self.sess.run(self.hidden, feed_dict={self.x: X,
self.scale: self.training_csale})
# 定义generate函数,它将隐含层的输出结果作为输入,通过之后的重建层将提取到的高阶特征复原为原始数据。
def generate(self, hidden=None):
if hidden is None:
hidden = np.random.normal(size=self.weights['b1'])
return self.sess.run(self.reconstruction,
feed_dict={self.hidden: hidden})
# 定义reconstruct函数,它完整运行一遍复原过程,包括特取高阶特征和通过高阶特征复原数据,即包括transform和generate两块。
def reconstruct(self, X):
return self.sess.run(self.reconstruction, feed_dict={self.x: X,
self.scale: self.training_scale})
# 定义getWeights函数来获取隐含层的权重w1
def getWeights(self):
return self.sess.run(self.weights['w1'])
# 同理
def getBiases(self):
return self.sess.run(self.weights['b1'])
mnist = input_data.read_data_sets('MNIST', one_hot=True)
# 定义一个队训练、测试数据进行标准化处理的函数,均值为0,方差为1
def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train)
X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test)
return X_train, X_test
# 再定义一个获取随机block数据的函数:
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
training_epochs = 20
batch_size = 128
display_step = 1
autoencoder = AdditiveGaussianNoiseAutoencoder(n_input=784,
n_hidden=200,
transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
scale=0.01
)
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(n_samples / batch_size)
for i in range(total_batch):
batch_xs = get_random_block_from_data(X_train, batch_size)
cost = autoencoder.partial_fit(batch_xs)
avg_cost += cost / n_samples * batch_size
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost))
print("Total cost: " + str(autoencoder.calc_total_cost(X_test)))