pytorch利用多个GPU并行计算

本文介绍了如何在PyTorch中利用torch.nn.DataParallel进行多GPU并行计算,详细阐述了DataParallel的工作原理及一个完整示例,展示了在不同GPU数量下数据的分配方式。
摘要由CSDN通过智能技术生成

参考:

https://pytorch.org/docs/stable/nn.html

https://github.com/apachecn/pytorch-doczh/blob/master/docs/1.0/blitz_data_parallel_tutorial.md

https://blog.csdn.net/Answer3664/article/details/98992409

1. torch.nn.DataParallel

torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)

在正向传递中,模块在每个设备上复制,每个副本处理一部分输入。在向后传递期间,来自每个副本的渐变被加到原始模块中

  • module:需要并行处理的模型

  • device_ids:并行处理的设备,默认使用所有的cuda

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值