知识蒸馏——Distilling the Knowledge in a Neural Network(论文理解)

前言

论文名:Distilling the Knowledge in a Neural Network
论文作者:Geoffrey Hinton et.al.
期刊/会议名:NIPS 2014
发表时间:2015-03
​论文地址:https://arxiv.org/abs/1503.02531

名词解释

  • teacher:大而笨重的模型

  • student:小而紧凑的模型

  • transfer set:用于小模型训练的数据,也是获得teacher模型soft target输出的输入数据集

  • hard target: 样本原始标签

  • soft target:teacher模型输出的预测结果

  • temperature: softmax函数中的超参数

  • knowledge:可以理解为从输入向量到输出向量学习到的映射

符号定义

  • z : logit,模型去除输出层的输出

  • p: probability,每个类的概率

1.Abstract


(1)面临的现状:
    传统的提高机器学习效果的简单方法一般是在相同的数据上使用不同的模型,最后平均他们的预测结果,这也就是集成模型。但是集成模型十分的笨重,会消耗很多计算资源,并且不适合部署在用户端,特别是当单个网络特别大的时候。

(2)文章的工作
    介绍了知识蒸馏,并使用知识蒸馏在MNIST数据集上,取得了令人惊讶的成就,并且将知识蒸馏运用在语音识别模型中,也取得的很好的效果。最后讲解了专才模型集成(这一部分和知识蒸馏关系不大)。

2.Introduction


将神经网络中的知识进行提取,是一种将模型的信息转化为更为简洁和易于理解形式的过程。 神经网络是一种由许多神经元组成的复杂计算模型,它们通过学习和调整权重来解决各种问题。然而,神经网络通常具有大量的参数和复杂的结构,这使得它们难以解释和应用到其他领域。因此,我们需要一种方法来提取和总结神经网络中的知识,以便更好地理解和应用这些模型。 在进行神经网络知识提取时,有几种常见的方法。一种常见的方法是使用可视化技术,如热力图、激活图和网络结构图等,来可视化网络中不同层的活动模式。这些可视化技术能够帮助我们发现网络中的模式和特征,并从中推断出网络的知识。 另一种方法是使用特征提取技术,如卷积神经网络(CNN)的滤波器、自动编码器的隐藏层和循环神经网络(RNN)的隐状态等,来提取网络学习到的重要特征。这些重要特征可以帮助我们更好地理解网络学习到的信息,并将其应用到其他问题中。 此外,还有一种被称为知识蒸馏的技术,它通过训练一个较小的模型来提取大型模型中的知识知识蒸馏通过引入目标函数和额外的训练策略,使小模型能够学习到大模型中的重要知识,并在不损失太多性能的情况下将其应用到实际问题中。 总而言之,提取神经网络中的知识是一项重要任务,它能够帮助我们更好地理解和应用这些复杂的模型。通过可视化、特征提取和知识蒸馏等方法,我们能够从神经网络中提取出有用的信息,并将其应用到其他领域或解决其他问题中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值