大家好,今天介绍一个神奇的AI应用~
AnythingLLM是一个全栈AI应用程序,可以将任何文档、资源(如网址链接、音频、视频)输入大语言模型(LLM),与大模型互动。
基本介绍
利用AnythingLLM,您可以使用现成的商业大语言模型或流行的开源大语言模型,再结合向量数据库解决方案构建一个私有ChatGPT:您可以本地运行,也可以远程托管,并能够与您提供的任何文档智能聊天。
AnythingLLM将您的文档划分为称为workspaces
(工作区)的对象。工作区的功能类似于线程,同时增加了文档的容器化,。工作区可以共享文档,但工作区之间的内容不会互相干扰或污染,因此您可以保持每个工作区的上下文清晰。
AnythingLLM的一些酷炫特性:
-
多用户实例支持和权限管理
-
工作区内的智能体Agent(浏览网页、运行代码等)
-
为您的网站定制的可嵌入聊天窗口
-
支持多种文档类型(PDF、TXT、DOCX等)
-
通过简单的用户界面管理向量数据库中的文档
-
两种对话模式:
聊天
和查询
。聊天模式保留先前的对话记录。查询模式则是是针对您的文档做简单问答 -
聊天中会提供所引用的相应文档内容
-
100%云部署就绪。
-
“部署你自己的LLM模型”。
-
管理超大文档时高效、低耗。只需要一次就可以嵌入(Embedding)一个庞大的文档或文字记录。比其他文档聊天机器人解决方案节省90%的成本。
-
全套的开发人员API,用于自定义集成!
支持的LLM、嵌入模型、转录模型和向量数据库
支持的LLM:
-
任何与llama.cpp兼容的开源模型
-
OpenAI
-
OpenAI (通用)
-
Azure OpenAI
-
Anthropic
-
Google Gemini Pro
-
Hugging Face (聊天模型)
-
Ollama (聊天模型)
-
LM Studio (所有模型)
-
LocalAi (所有模型)
-
Together AI (聊天模型)
-
Fireworks AI (聊天模型)
-
Perplexity (聊天模型)
-
OpenRouter (聊天模型)
-
Mistral
-
Groq
-
Cohere
-
KoboldCPP
支持的嵌入模型:
-
AnythingLLM原生嵌入器(默认)
-
OpenAI
-
Azure OpenAI
-
LocalAi (全部)
-
Ollama (全部)
-
LM Studio (全部)
-
Cohere
支持的转录模型:
-
AnythingLLM内置 (默认)
-
OpenAI
支持的向量数据库:
-
LanceDB (默认)
-
Astra DB
-
Pinecone
-
Chroma
-
Weaviate
-
QDrant
-
Milvus
-
Zilliz
技术概览
这个单库由三个主要部分组成:
-
frontend
: 一个 viteJS + React 前端,您可以运行它来轻松创建和管理LLM可以使用的所有内容。 -
server
: 一个 NodeJS express 服务器,用于处理所有交互并进行所有向量数据库管理和 LLM 交互。 -
docker
: Docker 指令和构建过程 + 从源代码构建的信息。 -
collector
: NodeJS express 服务器,用于从UI处理和解析文档。
AnythingLLM 安装
软件下载地址:https://useanything.com/download
文档:https://docs.anythingllm.com/introduction
https://docs.anythingllm.com/introduction
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓