大模型转换为 GGUF 并使用Ollama部署

下载的模型都是GGUF格式,那如何部署私有大模型呢?下面详细的对该过程解密:


1 什么是GGUF?为什么进行转换GGUF格式?

1.1 什么是GGUF?

      GGUF(GPT-Generated Unified Format),提到GGUF就不得不提到它的前身 GGML(GPT-Generated Model Language)。GGML是专门为了机器学习设计的张量库,最早可以追溯到2022/10。其目的是为了有一个单文件共享的格式,并且易于在不同架构的GPU和CPU上进行推理。但在后续的开发中,遇到了灵活性不足、相容性及难以维护的问题。

1.2 为什么进行格式转换?

      在传统的Deep Learning Model 开发中大多使用 PyTorch 来进行开发,但因为在部署时会面临相依 Lirbrary 太多、版本管理的问题于才有了 GGML、GGMF、GGJT 等格式,而在开源社群不停的迭代后 GGUF 就诞生了。 GGUF 实际上是基于 GGJT 的格式进行优化的,并解决了 GGML 当初面临的问题,包括:

        (1) 可扩展性:轻松为 GGML 架构下的工具添加新功能,或者向 GGUF 模型添加新 Feature,不会破坏与现有模型的兼容性。 

        (2) 对 mmap(内存映射)的兼容性:该模型可以使用 mmap 进行加载,实现快速载入和存储。

        (3) 易于使用:模型可以使用少量代码轻松加载和存储,无需依赖的 Library,同时对于不同编程语言支持程度也高。

        (4)模型信息完整:加载模型所需的所有信息都包含在模型文件中,不需要额外编写设置文件。 

        (5) 有利于模型量化:GGUF 支持模型量化(4 位、8 位、F16),在 GPU 变得越来越昂贵的情况下,节省 vRAM 成本也非常重要。


2 将hf模型转换为GGUF

2.1 采用llama.cpp仓库的convert_hf_to_gguf.py脚本来转换

git clone https://github.com/ggerganov/llama.cpp.gitpip install -r llama.cpp/requirements.txt

2.2 执行转换​​​​​​​

# 如果不量化,保留模型的效果python convert_hf_to_gguf.py D:\ai\20250413\Qwen\Qwen2___5-1___5B-Instruct-merged --outtype f16  --verbose --outfile D:\ai\20250413\Qwen\Qwen2___5-1___5B-Instruct-merged-gguf.gguf# 如果需要量化(加速并有损效果),直接执行下面脚本就可以python convert_hf_to_gguf.py D:\ai\20250413\Qwen\Qwen2___5-1___5B Instruct-merged --outtype q8_0  --verbose --outfile D:\ai\20250413\Qwen\Qwen2___5-1___5B-Instruct-merged-gguf_q8_0.gguf​​​​​​​
--outtype:输出类型,其含义:  q2_k:特定张量(Tensor)采用较高的精度设置,而其他的则保持基础级别。  q3_k_l、q3_k_m、q3_k_s:这些变体在不同张量上使用不同级别的精度,从而达到性能和效率的平衡。  q4_0:这是最初的量化方案,使用 4 位精度。  q4_1 和 q4_k_m、q4_k_s:这些提供了不同程度的准确性和推理速度,适合需要平衡资源使用的场景。  q5_0、q5_1、q5_k_m、q5_k_s:这些版本在保证更高准确度的同时,会使用更多的资源并且推理速度较慢。  q6_k 和 q8_0:这些提供了最高的精度,但是因为高资源消耗和慢速度,可能不适合所有用户。  fp16 和 f32: 不量化,保留原始精度。

2.3 转换后的模型

图片


3 使用ollama运行gguf

3.1 创建ModelFile

      复制模型所在路径,创建名为 ModelFile的文件,内容如下:

​​​​​​​

# GGUF文件路径FROM D:\ai\20250413\Qwen\Qwen2___5-1___5B-Instruct-merged-gguf.gguf

3.2 创建自定义模型

使用ollama create 指令创建自定义模型

ollama create oldwine-Qwen2.5-1.5B-Instruct --file ./ModelFile

图片

3.3 运行模型:

      运行ollama,输入“ollama list”,可以看到已安装列表中已存在的大模型,输入“ollama run 模型名称”即可开始对话(此时即使把原本的gguf文件删除,也不影响Ollama运行这个大模型)。

图片


4 本地部署的图形化界面Open-WebUI

4.1 下载安装​​​​​​​

# 1.创建conda 虚拟环境conda create -n openwebui python==3.11 -y# 2. 切换到对应conda虚拟环境conda activate openwebui#3. 安装pip install open-webui# 4. 启动web服务open-webui serve

4.2 大模型交互聊天

图片

图片

  如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

<think>嗯,用户想了解多模态模型和GGUF格式的使用说明。首先,我需要确认GGUF是什么。根据引用[1]和[3],GGUF是用于机器学习模型的格式,特别是支持GGML的模型,比如ChatGLM、Baichuan、Whisper等。Xinference库支持这种格式,可以用于大语言模型、语音识别和多模态模型。 多模态模型结合了多种数据类型,比如文本、图像、语音,像CLIP、BLIP这些模型都是典型的多模态模型,引用[2]提到厂内的PaddleMIX框架可能相关。用户可能想知道如何将GGUF格式应用到这些多模态模型上。 接下来,使用说明可能包括安装库、模型加载、推理步骤。比如引用[3]提到Xinference和LangChain结合,需要安装xinference和必要的依赖。模型加载部分,引用[4]展示了不同模型对GPU显存的要求,用户需要根据硬件选择合适的模型。例如Qwen2.5-VL-3B需要8G显存,而72B则需要158G,这对用户来说是个重要信息。 文档方面,可能需要指导用户如何获取GGUF格式的模型文件,可能通过Hugging Face等平台下载。然后创建Ollama模型,引用[1]提到直接上传GGUF文件到Web UI。推理部分,使用Xinference启动服务,加载模型,调用API进行多模态任务,比如图像描述生成或视觉问答。 注意事项里,硬件兼容性很重要,比如是否支持CUDA或Mac的Metal。另外,多模态任务需要模型支持,比如处理图像输入可能需要特定的预处理步骤。用户可能需要参考具体模型的文档,比如BLIP2或LLaVA的GGUF版本。 最后,相关文档资源需要给出官方链接和社区资源,帮助用户进一步学习。可能的问题包括如何优化性能、处理不同模态输入,以及支持的模型列表。需要确保回答结构清晰,步骤详细,且引用正确的来源,比如引用[1]到[4]的信息。</think>### 多模态模型与GGUF格式使用说明 #### 1. **GGUF格式简介** GGUF(GPT-Generated Unified Format)是专为机器学习模型设计的二进制文件格式,支持多模态模型、大语言模型(LLMs)及语音识别模型的部署与推理。其特点包括: - **跨平台兼容性**:支持CPU/GPU推理,适配多种硬件环境[^1][^3]。 - **高效存储**:通过量化技术减少模型体积,例如将浮点参数转换为低精度格式(如4-bit/8-bit)。 - **多模态支持**:可加载文本-图像、文本-语音等多模态模型,如LLaVA、BLIP2等[^2][^4]。 --- #### 2. **多模态模型使用流程** ##### **步骤1:安装依赖库** ```bash # 安装Xinference(支持GGUF模型部署) pip install xinference # 安装多模态依赖(如PaddleMIX框架) pip install paddlemix ``` ##### **步骤2:加载GGUF模型** 通过Xinference启动本地服务加载模型: ```python from xinference.client import Client client = Client("http://localhost:9997") model_uid = client.launch_model( model_name="qwen2.5-vl-7b", # 多模态模型示例 model_format="gguf", model_size_in_billions=7, # 根据显存选择模型大小[^4] quantization="q4_0" # 量化等级(可选q4_0/q8_0等) ) ``` ##### **步骤3:执行多模态推理** **示例:图像描述生成** ```python response = client.generate( model_uid=model_uid, prompt="描述这张图片的内容:", images=["path/to/image.jpg"], # 输入图像路径 max_tokens=100 ) print(response["choices"][0]["text"]) ``` --- #### 3. **关键注意事项** 1. **硬件要求**: - **显存**:7B模型需≥20GB显存,72B模型需≥158GB显存。 - **加速库**:启用CUDA或Metal(Mac)以提升推理速度。 2. **模型兼容性**: - 确保模型文件(如`qwen2.5-vl-7b-q4_0.gguf`)与框架版本匹配。 - 多模态任务需模型本身支持图像/语音输入(如LLaVA、BLIP2的GGUF版本)[^3]。 3. **性能优化**: - 使用`n_gpu_layers`参数指定GPU加速层数(如`n_gpu_layers=20`)。 - 调整`batch_size`和`threads`平衡CPU/GPU负载。 --- #### 4. **相关文档资源** - **官方指南**: - [Xinference多模态模型部署文档](https://xinference.readthedocs.io) - [GGUF格式规范说明](https://github.com/ggerganov/ggml) - **社区资源**: - Hugging Face的GGUF模型库(搜索`multimodal-gguf`) - PaddleMIX多模态实战案例[^2] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值