【无聊问题之】正则化项加在哪个公式里

正则化项通常被添加到机器学习模型的损失函数(或目标函数)中。在监督学习中,常见的损失函数如均方误差(MSE)或交叉熵损失等,用于衡量模型预测与真实标签之间的差异。正则化项则作为这个损失函数的一个额外部分,用于惩罚模型的复杂度。

以线性回归模型为例,使用L2正则化的损失函数可以表示为:

J(W, b) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||W||_2^2

  • J(W, b) 是损失函数,W  和 b 分别是模型的权重和偏置项。
  • L(\hat{y}^{(i)}, y^{(i)}) 是单个样本的损失函数,例如均方误差 (\hat{y}^{(i)} - y^{(i)})^2
  • \frac{\lambda}{2m} ||W||_2^2 是L2正则化项,||W||_2^2 是权重 ( W ) 的L2范数(即权重向量的各元素平方和),\lambda是正则化系数,用于控制正则化的强度。

在这个公式中,正则化项 \frac{\lambda}{2m} ||W||_2^2 被加到了原始的损失函数上。当模型训练时,优化算法(如梯度下降)会尝试最小化这个包含正则化项的损失函数。这样,正则化项就能起到约束模型复杂度、防止过拟合的作用。

类似地,对于其他类型的机器学习模型(如神经网络、逻辑回归等),正则化项也可以以类似的方式添加到损失函数中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值