正则化项通常被添加到机器学习模型的损失函数(或目标函数)中。在监督学习中,常见的损失函数如均方误差(MSE)或交叉熵损失等,用于衡量模型预测与真实标签之间的差异。正则化项则作为这个损失函数的一个额外部分,用于惩罚模型的复杂度。
以线性回归模型为例,使用L2正则化的损失函数可以表示为:
- 是损失函数,W 和 b 分别是模型的权重和偏置项。
- 是单个样本的损失函数,例如均方误差 。
- 是L2正则化项, 是权重 ( W ) 的L2范数(即权重向量的各元素平方和),是正则化系数,用于控制正则化的强度。
在这个公式中,正则化项 被加到了原始的损失函数上。当模型训练时,优化算法(如梯度下降)会尝试最小化这个包含正则化项的损失函数。这样,正则化项就能起到约束模型复杂度、防止过拟合的作用。
类似地,对于其他类型的机器学习模型(如神经网络、逻辑回归等),正则化项也可以以类似的方式添加到损失函数中。