正则化项通常被添加到机器学习模型的损失函数(或目标函数)中。在监督学习中,常见的损失函数如均方误差(MSE)或交叉熵损失等,用于衡量模型预测与真实标签之间的差异。正则化项则作为这个损失函数的一个额外部分,用于惩罚模型的复杂度。
以线性回归模型为例,使用L2正则化的损失函数可以表示为:
是损失函数,W 和 b 分别是模型的权重和偏置项。
是单个样本的损失函数,例如均方误差
正则化项通常被添加到机器学习模型的损失函数(或目标函数)中。在监督学习中,常见的损失函数如均方误差(MSE)或交叉熵损失等,用于衡量模型预测与真实标签之间的差异。正则化项则作为这个损失函数的一个额外部分,用于惩罚模型的复杂度。
以线性回归模型为例,使用L2正则化的损失函数可以表示为: