Geometrically Constrained Trajectory Optimization for Multicopters 论文解析

关于多旋翼几何约束轨迹优化

《Geometrically Constrained Trajectory Optimization for Multicopters》一文由浙江大学博士 汪哲培 2022年发表在IEEE, 涉及到这篇论文地内容,由汪哲培在 Bilibili 做了介绍:论文相关介绍

关于几何约束多旋翼轨迹规划,属于路径规划地后端优化,论文的实验实现比现有的其他路径生成算法的生成速度快一个数量级。具有简洁、高效、非奇异、适用性等优势。

论文中提到的相关工作:微分平坦性(涉及的几篇文献,简要概述)、基于采样的运动规划(PRM和RRT的发展)、基于优化的路径规划(GPOPS-Ⅱ,ACADO)需要很长的计算时间。

MINCO 轨迹类

参数化方式:中间点 q = [ P1,P2,…,P(N-1) ]T 和 T =[ T1,T2,T3,…,TN ]T ,(矩阵转置)
条件:满足起始边界条件,且满足最优性条件的固定段数轨迹。
任意给定参数,MINCO 轨迹的产生为线性复杂度,进一步设计了 MINCO 轨迹类的 Deformation 形变操作

形变操作: 轨迹类在任意用户需求下的时空变形。
在这里插入图片描述
在轨迹优化的时候,经常会碰到 无人机视野被障碍物挡住 的情况,有时候需要做一些视野上的约束,让无人机的视野不被覆盖,既要调整时间又要调整空间。第二个是无人机对安全阈值的需求,虽然原本优化的轨迹没有碰到障碍物,但是在离障碍物太近的情况下,如果无人机受到干扰,或者被风吹一下,就会产生碰到障碍物的紧急情况,在一个较高的安全阈值需求下,就需要把 watpoint 向远离障碍物的方向做相应的形变,对空间进行调整。

所有在轨迹上的需求,均可以优化直接定义在轨迹上的函数 F(c,T) 来实现,对于 MINCO 轨迹,定义:H( q, T ) = F( c(q,T) , T )


几何约束

**时间参数上的几何约束:**采用解析的 全局微分同胚 将定义域变换到欧氏空间。
在这里插入图片描述
在这里插入图片描述

空间上的几何约束: 考虑直接在几何参数下的几何约束,对于 T 而言,目标函数于定义域边界趋于正无穷。对于 q 而言,每一个中间点均被约束在任意一个凸多面体或者球之中。

具有时空变形的MINCO轨迹,在MINCO中,仅用q和T紧凑参数化
在不牺牲可扩展性的前提下,提出了时间积分惩罚函数,将有约束轨迹优化问题转化为可可靠求解的稀疏无约束轨迹优化问题

  1. 消除时间限制
  2. 球面空间约束消除
  3. 多面体空间约束消除
  4. 时间积分惩罚功能
  5. 基于无约束NLP的轨迹优化

实验

论文中实现的方法 使用纯C++ 和Eigen 依赖,串行实现,不依赖商用求解器
在这里插入图片描述
在这里插入图片描述
提出的方法比其他的方法快一个数量级,并且在轨迹质量上与求解器求解的轨迹相差不大。

### Minco 轨迹规划与无人机飞行控制系统实现方法 #### 多项式轨迹规划 在Minco轨迹规划中,采用多项式来表示无人机的期望路径。这种表达方式允许精确控制位置、速度和加速度等参数的变化率,从而确保平滑过渡并满足特定约束条件[^3]。 对于三维空间内的无人机运动而言,可以分别针对x轴、y轴和z轴定义独立的时间依赖函数: \[ p(t)=a_0+a_1t+\cdots+a_nt^n \] 其中\(p(t)\)代表某一时刻的位置坐标;而系数\(\{a_i|i=0,\ldots,n\}\)则由边界条件决定——即起始点/终点处的速度、加速度以及其他可能存在的限制因素所共同确定下来。 为了简化计算复杂度同时保持足够的灵活性,在实践中通常会选择五次或七次多项式作为基础构建单元。 ```matlab % 定义时间向量 t 和对应的多项式系数 a syms t; a = sym('a', [1, 8]); % 假设我们使用的是一个7阶多项式 polynomial_expression = polyval(a,t); ``` #### 动态模型集成 当涉及到具体应用时,则需进一步引入物理特性描述,比如质量分布、空气阻力效应等等。这一步骤不仅限于理论层面探讨,更重要的是要将其融入到整体框架之中形成闭环反馈机制。基于此目的,MATLAB提供了Simulink工具箱用于搭建仿真环境,并支持自动生成嵌入式代码以便部署至真实硬件平台之上[^2]。 考虑到实际操作过程中不可避免会遇到外界干扰源的影响(风切变现象),因此有必要设计鲁棒性强的状态估计器如扩展卡尔曼滤波(EKF),用来持续校正感知误差带来的偏差累积问题。 #### 控制策略制定 最后也是最关键的一环就是如何选取合适的控制器形式以达成预期效果。PID调节因其结构简单易于理解和调试而在工业界广泛流行开来;然而面对更加复杂的任务需求时,线性二次型最优(LQR)/H∞等高级算法或许能提供更好的性能表现。无论选用哪种方案都离不开对系统传递特性的深入理解以及反复试验验证的过程。 ```matlab % 设计LQR控制器 A = ...; B = ...; Q = eye(size(A)); R = eye(size(B)); [K,S,e] = lqr(A,B,Q,R); % 应用所得增益矩阵K进行状态反馈控制律合成 u = -K*x; ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聪明小張

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值