💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
参考下面这篇文献,然后把改进麻雀算法换为蜣螂优化算法。
随着科技的进步,互联网,人工智能技术的发展,物联网已成为当下热门的研究领域之一。无线传感器网络(Wireless Sensor Network,WSN)作为物联网核心支撑技术之一,对物联网的发展起重要的作用。WSN是由具有通信与计算能力的传感器节点构成的组织性分布式网络系统,它具有成本低、易于部署、可靠性高等诸多优势[1],因此,该技术成为目前能够处理民用和军用应用最为出色的技术之一,具备在军事勘探、环境监测、智慧城市等领域的广泛应用价值[2]。
网络覆盖问题是 WSN 众多基本问题之一。优化传感器的覆盖范围,有利于监测周围事物并获取更全面的信息。这样的优化能够使得网络资源的分配更加合理,并进一步提高传感器网络的生存周期。目前,众多学者在关于无线传感器网络覆盖问题的研究上主要通过算法对其进行优化改良。文献[3]提出了一种贪婪迭代启发式算法来求解无线传感器网络覆盖阶段的问题,将问题考虑成为一个节能覆盖问题,采用整数线性规划技术来构建。该方法能有效的解出覆盖能量效率性能方面的最优解,在最小能耗的同时达到最大覆盖范围,但整体的覆盖率还有待进一步提高。针对此问题,文献[4]提出了一种改进虚拟力算法的有向传感器区域覆盖优化算法。该算法通过计算节点与各邻居节 点所组成的双节点覆盖图形的质心来引入 虚拟斥力修正指标。利用修正指标,可以有 效地消除区域中的盲区和重叠区,进而提高 覆盖率。需要注意的是,此方法对覆盖区域 有一定的要求。文献[5]利用幕投影的方式对 基本鱼群算法进行改进并将其应用在无线传感器网络覆盖中,相比基本鱼群算法,此方法将覆盖率提升了 8.9%,达到 90.2%, 但优化后的网络覆盖率依旧偏低,有更大的提升空间。
蜣螂优化算法是一种启发式算法,灵感来源于蜣螂在寻找食物时的行为。它通过模拟蜣螂在寻找食物时释放信息素的过程来实现优化搜索。无线传感器网络覆盖优化是指通过合理部署有限数量的传感器节点,实现对目标区域的有效监测覆盖,以最大程度地提高传感器网络的性能。
将蜣螂优化算法应用于无线传感器网络覆盖优化研究中,可以通过以下步骤进行:
1. 问题建模:将传感器网络覆盖优化问题转化为优化目标函数的最优化问题。通常包括最大化覆盖范围、最小化传感器节点数量等指标。
2. 设计适应度函数:根据传感器节点的位置和覆盖范围,设计适应度函数来评估每个解的优劣程度。
3. 蜣螂优化算法实现:实现蜣螂优化算法的基本框架,包括初始化蜣螂群体、信息素更新、蜣螂移动、局部搜索等步骤。
4. 优化过程:通过迭代优化过程,不断更新蜣螂的位置和信息素,以寻找最优的传感器节点部署方案。
5. 评估与分析:评估优化结果,分析传感器节点部署方案的覆盖效果、能耗等性能指标,与其他算法进行比较分析。
6. 参数调优:根据实验结果,调整蜣螂优化算法的参数,进一步提高算法性能。
通过以上步骤,基于蜣螂优化算法的无线传感器网络覆盖优化研究可以实现对传感器节点部署方案的自动优化,提高传感器网络的覆盖效率和性能。
📚2 运行结果
论文结果:
复现结果:
部分代码:
%%适应度函数,适应度值为未覆盖率,求最小,即求覆盖率最大。
function [fitness,Coordinate,X,CoordinateNumber] = fun(X,N,R,AreaX,AreaY)
Area = zeros(AreaX,AreaY);%定义覆盖范围为100*100的区域
X = floor(X);%取整
%边界处理
X(X<1) = 1;
for i = 1:2*N
if(i<=N)
X(i) = min(X(i),AreaX);
else
X(i) = min(X(i),AreaY);
end
end
%随机产生100个节点的位置。
Position = zeros(N,2);
Position(:,1) = X(1:N)';
Position(:,2) = X(N+1:end)';
Coordinate=zeros(AreaX*AreaY*R^2,2);
count = 1;
for i = 1:N
centerX = Position(i,1);
centerY = Position(i,2);
for a = centerX - R:centerX+R
for b = centerY -R :centerY + R
%保证在边界范围内
a = max(1,a);a = min(a,size(Area,1));
b = max(1,b);b = min(b,size(Area,2));
%计算距离
distance = ((centerX - a)^2 + (centerY - b)^2)^0.5;
if(distance<=R)
Area(a,b) = 1;
Coordinate(count,:) = [a,b];
CoordinateNumber = count;
count = count+1;
end
end
end
end
fitness =1-sum(Area(:))/(AreaX*AreaY);%未覆盖率
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]高志翔,庞菲菲,温宗周,等.基于改进麻雀算法的无线传感器网络覆盖优化研究[J/OL].微电子学与计算机:1-12[2024-05-15].https://doi.org/10.19304/J.ISSN1000-7180.2023.0651.